Influence of the Preparation Method on Planar Perovskite CH3NH3PbI3-xClx Solar Cell Performance and Hysteresis

Open access

Abstract

Organometal halide perovskites are promising materials for lowcost, high-efficiency solar cells. The method of perovskite layer deposition and the interfacial layers play an important role in determining the efficiency of perovskite solar cells (PSCs). In the paper, we demonstrate inverted planar perovskite solar cells where perovskite layers are deposited by two-step modified interdiffusion and one-step methods. We also demonstrate how PSC parameters change by doping of charge transport layers (CTL). We used dimethylsupoxide (DMSO) as dopant for the hole transport layer (PEDOT:PSS) but for the electron transport layer [6,6]-phenyl C61 butyric acid methyl ester (PCBM)) we used N,N-dimethyl-N-octadecyl(3-aminopropyl)trimethoxysilyl chloride (DMOAP).

The highest main PSC parameters (PCE, EQE, VOC) were obtained for cells prepared by the one-step method with fast crystallization and doped CTLs but higher fill factor (FF) and shunt resistance (Rsh) values were obtained for cells prepared by the two-step method with undoped CTLs.

1. Bretschneider, S. A., Weickert, J., Dorman, J. A., & Schmidt-Mende, L. (2014). Research update: physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Mater., 2(5), 40701. DOI: 10.1063/1.4871795.

2. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316–320. DOI: 10.1038/nature12340.

3. Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C.-S., Chang, J. A., Lee, Y. H., Kim, H., Sarkar, A., Nazeeruddin, M. K., Gratzel, M., & Il Seok, S. (2013). Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics, 7(6), 486–491. DOI: 10.1038/nphoton.2013.80 efficient.

4. Liu, D., & Kelly, T. L. (2013). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics, 8(2), 133–138. DOI: 10.1038/nphoton.2013.342.

5. Lotsch, B. V. (2014). New light on an old story: perovskites go solar. Angew. Chemie - Int. Ed., 53(3), 635–637. DOI: 10.1002/anie.201309368.

6. Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A, 3(17), 8970–8980. DOI: 10.1039/c4ta04994b.

7. Ibn-Mohammed, T., Koh, S.C.L., Reaney, I.M, Acquaye, A., Schileo, G., Mustapha, K.B., & Greenough, R. (2017). Perovskite solar cells: an integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sus. Energy Rev., 80, 1321-1344. DOI: 10.1016/j.rser.2017.05.095

8. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131(17), 6050–6051. DOI: 10.1021/ja809598r.

9. NREL, “Efficiency Chart,” Nrel. p. 1, 2017.

10. Mehmood, U., Al-Ahmed, A., Afzaal, M., Al-Sulaiman, F. A., & Daud, M. (2017). Recent progress and remaining challenges in organometallic halides based perovskite solar cells. Renew. Sustain. Energy Rev., 78, 1–14. DOI: 10.1016/j.rser.2017.04.105.

11. Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., & Han, H. (2014). A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194), 295–298. DOI: 10.1126/science.1254763.

12. Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Il Seok, S. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240), 1234–1237. DOI: 10.1126/science.aaa9272.

13. Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., & Snaith, H. J. (2014). Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater., 24(1), 151–157. DOI: 10.1002/adfm.201302090.

14. Heo, J. H., & Im, S. H. (2016). Highly reproducible, efficient hysteresis-less CH3NH3PbI 3-xClx planar hybrid solar cells without requiring heat-treatment. Nanoscale, 8(2554–2560). DOI: 10.1039/c5nr08458j.

15. Qing, J., Chandran, H. T., Cheng, Y., Liu, K., Li, H.-W., Tsang, S. W., Lo, M.-F., & Lee, C.-S. (2015). Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor. ACS Appl. Mater. Interfaces, 7(41), 23110–23116. DOI: 10.1021/acsami.5b06819.

16. Quilettes, D. W., Vorpahl, S. M., Stranks, S. D., Nagaoka, H., Eperon, G. E., Ziffer, M. E., Snaith, H. J., & Ginger, D. S. (2015). Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 348(6235), 683–686. DOI: 10.1126/science.aaa5333

17. Fan, L., Ding, Y., Luo, J., Shi, B., Yao, X., Wei, C., Zhang, D., Wang, G., Sheng, Y., Chen, Y., Hagfeldt, A., Zhao, Y., & Zhang, X. (2017). Elucidating the role of chlorine in perovskite solar cells. J. Mater. Chem. A, 5, 7423–7432. DOI: 10.1039/c7ta00973a.

18. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643–647. DOI: 10.1126/science.1228604 [doi].

19. Zhao, Y., Nardes, A. M., & Zhu, K. (2014). Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. Faraday Discuss., 176, 301–312. DOI: 10.1039/c4fd00128a.

20. Di Giacomo, F., Zardetto, V., Lucarelli, G., Cinà, L., Di Carlo, A., Creatore, M., & Brown, T. M. (2016). Mesoporous perovskie solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illummination. Nano Energy, 30, 460–469. DOI: 10.1016/j.nanoen.2016.10.030.

21. Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395–398. DOI: 10.1038/nature12509.

22. Tan, H., Jain, A., Voznyy, O., Lan, X., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Quan, L. N., Zhao, Y., Lu, Z., Yang, Z., Hoogland, S., & Sargent, E. H. (2017). Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355, 722–726. DOI: 10.1126/science.aai9081

23. Seo, J., Park, S., Kim, Y. C., Jeon, N. J., Noh, J. H., Yoon, S. C., & Il Seok, S. (2014). Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy Environ. Sci., 7(8), 2642–2646. DOI: 10.1039/c4ee01216j.

24. Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E., & Snaith, H. J. (2013). Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun., 4, 2761. DOI: 10.1038/ncomms3761.

25. Seo, S., Park, I. J., Kim, M., Lee, S., Bae, C., Jung, H. S., Park, N. G., Kim, J. Y., & Shin, H. (2016). An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale, 8(22), 11403–11412. DOI: 10.1039/c6nr01601d.

26. Yin, X., Que, M., Xing, Y., & Que, W. (2015). High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer. J. Mater. Chem. A, 3(48), 24495–24503. DOI: 10.1039/c5ta08193a.

27. Xiao, M., Gao, M., Huang, F., Pascoe, A. R., Qin, T., Cheng, B., Bach, U., & Spiccia, L. (2016). Efficient perovskite solar cells employing inorganic interlayers. ChemNanoMat, 2(3), 182–188. DOI: 10.1002/cnma.201500223.

28. Rao, H., Ye, S., Sun, W., Yan, W., Li, Y., Peng, H., Liu, Z., Bian, Z., Li, Y.,& Huang, C. (2016). A 19.0 % efficiency achieved in CuOx-based inverted CH3NH3PbI3-xClx solar cells by an effective Cl doping method. Nano Energy, 27, 51–57. DOI: 10.1016/j.nanoen.2016.06.044.

29. Li, M., Shen, P., Wang, K., Guo, T., & Chen, P. (2015). Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A., 3(17), 9011–9019. DOI: 10.1039/c4ta06425a.

30. Gao, P., Gratzel, M., & Nazeeruddin, M. K. (2014). Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci., 7, 2448–2463. DOI: 10.1039/c4ee00942h.

31. Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y., & Huang, J. (2014). Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci., 7(8), 2619. DOI: 10.1039/c4ee01138d.

32. Ye, S., Rao, H., Yan, W., Li, Y., Sun, W., Peng, H., Liu, Z., Bian, Z., Li, Y., & Huang, C. (2016). A strategy to simplify the preparation process of perovskite solar cells by codeposition of a hole-conductor and a perovskite layer. Adv. Mater., 28(43), 9648–9654. DOI: 10.1002/adma.201603850.

33. Zhou, Z., Wang, Z., Zhou, Y., Pang, S., Wang, D., Xu, H., Liu, Z., Padture, N. P., & Cui, G. (2015). Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chemie Int. Ed., 54(33), 9705–9709. DOI: 10.1002/anie.201504379.

34. Wang, Q., Yuan, Y., & Huang, J. (2014). Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci., 7, 359–2365. DOI: 10.1039/c4ee00233d.

35. Kaulachs, I., Muzikante, I., Gerca, L., Shlihta, G., Shipkovs, P., Grehovs, V., Kalnachs, J., Roze, M., Rozite, G., & Ivanova, A. (2013). Electrodes for GaOHPc:PCBM/P3HT:PCBM bulk heterojunction solar cell. Chem. Phys., 405, 46–51. DOI: 10.1016/j.chemphys.2012.06.007.

36. Kaulachs, I., & Silinsh, E. (1994). Molecular triplet exciton generation via optical charge transfer states in a-metalfree phthalocyanine, studied by magnetic field effects. Latv. J. Phys. Tech. Sci., 5, 12–22, 1994.

37. Chang, C., Huang, W., & Chang, Y. (2016). Highly-efficient and long-term stable perovsite solar cells enabled by a cross-linkable n-doped cathode interfacial layer. Chem. Mater., 28, 6305–6312. DOI: 10.1021/acs.chemmater.6b02583.

38. Kaltenbrunner, M., Adam, G., Głowacki, E. D., Drack, M., Schwödiauer, R., Leonat, L., Apaydin, D. H., Groiss, H., Scharber, M. C., White, M. S., Sariciftci, N. S., & Bauer, S. (2015). Flexible high power-per-weight perovskite solar cells with chromium oxidemetal contacts for improved stability in air. Nat. Mater., 14, 1032–1039. DOI: 10.1038/nmat4388.

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

Journal Information


CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 370 229 9
PDF Downloads 176 121 8