Open Access

Influence of the Preparation Method on Planar Perovskite CH3NH3PbI3-xClx Solar Cell Performance and Hysteresis


Cite

1. Bretschneider, S. A., Weickert, J., Dorman, J. A., & Schmidt-Mende, L. (2014). Research update: physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Mater., 2(5), 40701. DOI: 10.1063/1.4871795.10.1063/1.4871795Search in Google Scholar

2. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316–320. DOI: 10.1038/nature12340.10.1038/12340Open DOISearch in Google Scholar

3. Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C.-S., Chang, J. A., Lee, Y. H., Kim, H., Sarkar, A., Nazeeruddin, M. K., Gratzel, M., & Il Seok, S. (2013). Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics, 7(6), 486–491. DOI: 10.1038/nphoton.2013.80 efficient.10.1038/nphoton.2013.80Open DOISearch in Google Scholar

4. Liu, D., & Kelly, T. L. (2013). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics, 8(2), 133–138. DOI: 10.1038/nphoton.2013.342.10.1038/nphoton.2013.342Open DOISearch in Google Scholar

5. Lotsch, B. V. (2014). New light on an old story: perovskites go solar. Angew. Chemie - Int. Ed., 53(3), 635–637. DOI: 10.1002/anie.201309368.10.1002/anie.20130936824353055Open DOISearch in Google Scholar

6. Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A, 3(17), 8970–8980. DOI: 10.1039/c4ta04994b.10.1039/C4TA04994BOpen DOISearch in Google Scholar

7. Ibn-Mohammed, T., Koh, S.C.L., Reaney, I.M, Acquaye, A., Schileo, G., Mustapha, K.B., & Greenough, R. (2017). Perovskite solar cells: an integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sus. Energy Rev., 80, 1321-1344. DOI: 10.1016/j.rser.2017.05.09510.1016/j.rser.2017.05.095Open DOISearch in Google Scholar

8. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131(17), 6050–6051. DOI: 10.1021/ja809598r.10.1021/ja809598r19366264Search in Google Scholar

9. NREL, “Efficiency Chart,” Nrel. p. 1, 2017.Search in Google Scholar

10. Mehmood, U., Al-Ahmed, A., Afzaal, M., Al-Sulaiman, F. A., & Daud, M. (2017). Recent progress and remaining challenges in organometallic halides based perovskite solar cells. Renew. Sustain. Energy Rev., 78, 1–14. DOI: 10.1016/j.rser.2017.04.105.10.1016/j.rser.2017.04.105Search in Google Scholar

11. Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., & Han, H. (2014). A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194), 295–298. DOI: 10.1126/science.1254763.10.1126/.1254763Open DOISearch in Google Scholar

12. Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Il Seok, S. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240), 1234–1237. DOI: 10.1126/science.aaa9272.10.1126/.aaa9272Open DOISearch in Google Scholar

13. Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., & Snaith, H. J. (2014). Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater., 24(1), 151–157. DOI: 10.1002/adfm.201302090.10.1002/adfm.201302090Open DOISearch in Google Scholar

14. Heo, J. H., & Im, S. H. (2016). Highly reproducible, efficient hysteresis-less CH3NH3PbI 3-xClx planar hybrid solar cells without requiring heat-treatment. Nanoscale, 8(2554–2560). DOI: 10.1039/c5nr08458j.10.1039/C5NR08458JSearch in Google Scholar

15. Qing, J., Chandran, H. T., Cheng, Y., Liu, K., Li, H.-W., Tsang, S. W., Lo, M.-F., & Lee, C.-S. (2015). Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor. ACS Appl. Mater. Interfaces, 7(41), 23110–23116. DOI: 10.1021/acsami.5b06819.10.1021/acsami.5b0681926442432Open DOISearch in Google Scholar

16. Quilettes, D. W., Vorpahl, S. M., Stranks, S. D., Nagaoka, H., Eperon, G. E., Ziffer, M. E., Snaith, H. J., & Ginger, D. S. (2015). Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 348(6235), 683–686. DOI: 10.1126/science.aaa533310.1126/.aaa5333Open DOISearch in Google Scholar

17. Fan, L., Ding, Y., Luo, J., Shi, B., Yao, X., Wei, C., Zhang, D., Wang, G., Sheng, Y., Chen, Y., Hagfeldt, A., Zhao, Y., & Zhang, X. (2017). Elucidating the role of chlorine in perovskite solar cells. J. Mater. Chem. A, 5, 7423–7432. DOI: 10.1039/c7ta00973a.10.1039/C7TA00973AOpen DOISearch in Google Scholar

18. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643–647. DOI: 10.1126/science.1228604 [doi].10.1126/.1228604[doi]Open DOISearch in Google Scholar

19. Zhao, Y., Nardes, A. M., & Zhu, K. (2014). Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. Faraday Discuss., 176, 301–312. DOI: 10.1039/c4fd00128a.10.1039/c4fd00128a25407110Open DOISearch in Google Scholar

20. Di Giacomo, F., Zardetto, V., Lucarelli, G., Cinà, L., Di Carlo, A., Creatore, M., & Brown, T. M. (2016). Mesoporous perovskie solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illummination. Nano Energy, 30, 460–469. DOI: 10.1016/j.nanoen.2016.10.030.10.1016/j.nanoen.2016.10.030Open DOISearch in Google Scholar

21. Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395–398. DOI: 10.1038/nature12509.10.1038/12509Open DOISearch in Google Scholar

22. Tan, H., Jain, A., Voznyy, O., Lan, X., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Quan, L. N., Zhao, Y., Lu, Z., Yang, Z., Hoogland, S., & Sargent, E. H. (2017). Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355, 722–726. DOI: 10.1126/science.aai908110.1126/.aai9081Open DOISearch in Google Scholar

23. Seo, J., Park, S., Kim, Y. C., Jeon, N. J., Noh, J. H., Yoon, S. C., & Il Seok, S. (2014). Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy Environ. Sci., 7(8), 2642–2646. DOI: 10.1039/c4ee01216j.10.1039/c4ee01216jOpen DOISearch in Google Scholar

24. Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E., & Snaith, H. J. (2013). Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun., 4, 2761. DOI: 10.1038/ncomms3761.10.1038/ncomms376124217714Open DOISearch in Google Scholar

25. Seo, S., Park, I. J., Kim, M., Lee, S., Bae, C., Jung, H. S., Park, N. G., Kim, J. Y., & Shin, H. (2016). An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale, 8(22), 11403–11412. DOI: 10.1039/c6nr01601d.10.1039/c6nr01601d27216291Open DOISearch in Google Scholar

26. Yin, X., Que, M., Xing, Y., & Que, W. (2015). High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer. J. Mater. Chem. A, 3(48), 24495–24503. DOI: 10.1039/c5ta08193a.10.1039/C5TA08193AOpen DOISearch in Google Scholar

27. Xiao, M., Gao, M., Huang, F., Pascoe, A. R., Qin, T., Cheng, B., Bach, U., & Spiccia, L. (2016). Efficient perovskite solar cells employing inorganic interlayers. ChemNanoMat, 2(3), 182–188. DOI: 10.1002/cnma.201500223.10.1002/cnma.201500223Open DOISearch in Google Scholar

28. Rao, H., Ye, S., Sun, W., Yan, W., Li, Y., Peng, H., Liu, Z., Bian, Z., Li, Y.,& Huang, C. (2016). A 19.0 % efficiency achieved in CuOx-based inverted CH3NH3PbI3-xClx solar cells by an effective Cl doping method. Nano Energy, 27, 51–57. DOI: 10.1016/j.nanoen.2016.06.044.10.1016/j.nanoen.2016.06.044Search in Google Scholar

29. Li, M., Shen, P., Wang, K., Guo, T., & Chen, P. (2015). Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A., 3(17), 9011–9019. DOI: 10.1039/c4ta06425a.10.1039/c4ta06425aOpen DOISearch in Google Scholar

30. Gao, P., Gratzel, M., & Nazeeruddin, M. K. (2014). Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci., 7, 2448–2463. DOI: 10.1039/c4ee00942h.10.1039/c4ee00942hOpen DOISearch in Google Scholar

31. Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y., & Huang, J. (2014). Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci., 7(8), 2619. DOI: 10.1039/c4ee01138d.10.1039/C4EE01138DOpen DOISearch in Google Scholar

32. Ye, S., Rao, H., Yan, W., Li, Y., Sun, W., Peng, H., Liu, Z., Bian, Z., Li, Y., & Huang, C. (2016). A strategy to simplify the preparation process of perovskite solar cells by codeposition of a hole-conductor and a perovskite layer. Adv. Mater., 28(43), 9648–9654. DOI: 10.1002/adma.201603850.10.1002/adma.20160385027622991Open DOISearch in Google Scholar

33. Zhou, Z., Wang, Z., Zhou, Y., Pang, S., Wang, D., Xu, H., Liu, Z., Padture, N. P., & Cui, G. (2015). Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chemie Int. Ed., 54(33), 9705–9709. DOI: 10.1002/anie.201504379.10.1002/anie.20150437926118666Open DOISearch in Google Scholar

34. Wang, Q., Yuan, Y., & Huang, J. (2014). Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci., 7, 359–2365. DOI: 10.1039/c4ee00233d.10.1039/c4ee00233dOpen DOISearch in Google Scholar

35. Kaulachs, I., Muzikante, I., Gerca, L., Shlihta, G., Shipkovs, P., Grehovs, V., Kalnachs, J., Roze, M., Rozite, G., & Ivanova, A. (2013). Electrodes for GaOHPc:PCBM/P3HT:PCBM bulk heterojunction solar cell. Chem. Phys., 405, 46–51. DOI: 10.1016/j.chemphys.2012.06.007.10.1016/j.chemphys.2012.06.007Open DOISearch in Google Scholar

36. Kaulachs, I., & Silinsh, E. (1994). Molecular triplet exciton generation via optical charge transfer states in a-metalfree phthalocyanine, studied by magnetic field effects. Latv. J. Phys. Tech. Sci., 5, 12–22, 1994.Search in Google Scholar

37. Chang, C., Huang, W., & Chang, Y. (2016). Highly-efficient and long-term stable perovsite solar cells enabled by a cross-linkable n-doped cathode interfacial layer. Chem. Mater., 28, 6305–6312. DOI: 10.1021/acs.chemmater.6b02583.10.1021/acs.chemmater.6b02583Open DOISearch in Google Scholar

38. Kaltenbrunner, M., Adam, G., Głowacki, E. D., Drack, M., Schwödiauer, R., Leonat, L., Apaydin, D. H., Groiss, H., Scharber, M. C., White, M. S., Sariciftci, N. S., & Bauer, S. (2015). Flexible high power-per-weight perovskite solar cells with chromium oxidemetal contacts for improved stability in air. Nat. Mater., 14, 1032–1039. DOI: 10.1038/nmat4388.10.1038/nmat438826301766Open DOISearch in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics