Determination of Contact Potential Difference by the Kelvin Probe (Part II) 2. Measurement System by Involving the Composite Bucking Voltage

O. Vilitis 1 , M. Rutkis 1 , J. Busenbergs 1 , and D. Merkulovs 2
  • 1 Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, Riga, LV-1063, Latvia
  • 2 Institute of Physical Energetics, 11 Krivu Street, LV-1006, Riga, Latvia


The present research is devoted to creation of a new low-cost miniaturised measurement system for determination of potential difference in real time and with high measurement resolution. Furthermore, using the electrode of the reference probe, Kelvin method leads to both an indirect measurement of electronic work function or contact potential of the sample and measurement of a surface potential for insulator type samples. The bucking voltage in this system is composite and comprises a periodically variable component. The necessary steps for development of signal processing and tracking are described in detail.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Vilitis, O., Rutkis, M., Busenbergs, J., and Merkulovs, D. (2016). Determination of contact potential difference by the Kelvin probe (Part I). 1. Basic principles of measurements probe. Latv. J. Phys. Techn. Sci., 2, 48–57.

  • 2. Palevsky, H., Swank, R.K., and Grenchik, R. (1947). Design of dynamic condenser electrometers. Rev. Sci. Instrum, 18, 298–314.

  • 3. Mitchinson, J.C., Prongle, R.D., and Farvis, W.E.J. (1971). Surface potential measurement using a rotating dynamic capacitor. J.phys., E 4, 525–529.

  • 4. Petit-Cloerc, Y., and Carette, J.D. (1968). New feedback Kelvin probe. Rev. Sci. Instrum., 38, 933–934.

  • 5. Blott, B.H., and Lee, T.J. (1969). A two frequency vibrating capacitor method for contact potential diference measurements. J. Phys., 2, 785–788.

  • 6. Maljusch, A. (2012). Integrated scanning Kelvin probe – Scanning electrochemical microscopy system: Design, development and applications. Diss. 1–245.

  • 7. Ritty, B., Wahtel, Ott, F., Manquenouille, R., and Donnet, J.B. (1980). New application of the Kelvin method involving the scanning of the bucking voltage. Rev. Sci. Instrum., 51 (10), 1421–1423.

  • 8. Baikie, I.D., van der Werf, K.O., Broeze, J., and van Silfhout, A. (1989). Automatic Kelvin probe compatible with ultrahigh vacuum. Rec. Sci. Instrum. 60, 930.

  • 9. KP Technology. USA Inc. Available at

  • 10. Vilitis, O., Fonavs, E., and Muzikante, I. (2001). A system for measuring surface potential by the Kelvin-Zisman vibrating capacitor probe. Latv. J. Phys. Techn. Sci., 5, 38–56.

  • 11. Rossi, F. (1992). Contact potential measurement: The preamplifier. Rev Sci. Instr., 63 (7), 3744–3751.

  • 12. Neufeld, A.K., Bond, A.M., and Cole, I.S. (2003). Construction and operation of a Kelvin probe instrument. Chapter 3, 29–88.

  • 13. Hansen, W.N., and Johnson, K.B. (1994). Work function measurements in gas ambient. Surface Science, 316, 373–382.

  • 14. Toda, K., Ochi, K., and Sanemasa, I. (1996). Non-sensing properties of Au thin film. Sensors and Actuators, B 32, 15–18.

  • 15. Ostrick, B. (2000). Die Untersuchung der Karbonat – Kohlendioxid – Wechselwirkung im Feuchtefilm der Oberfläche. Diss. 1 – 131.


Journal + Issues