Electrochemical corrosion characteristics of phosphated S355J2 steel in sulfate environment

Open access


Large number of mechanical and chemical surface pretreatment techniques is actually used on steels in industrial practice. Choosing the right combination of these technologies is one of the most important tasks for many applications. The purpose of this research was to evaluate the influence of selected mechanical surface preparation methods (grinding, sandblasting) on the quality and electrochemical corrosion characteristics of S355J2 steel before and after the final chemical surface treatment by the technology of manganese phosphating. The surface morphology of the formed phosphate layer was evaluated by a scanning electron microscopy (SEM) and the cross section analysis was performed by a light metallographic microscopy. 0.1M Na2SO4 solution simulating aggressive industrial pollution was selected for electrochemical corrosion tests. Impact evaluation of various mechanical and chemical surface treatments on the corrosion properties of the tested steel was realized by potentiodynamic polarization tests (PD) and electrochemical impedance spectroscopy (EIS) using the Tafel analysis and equivalent circuits method respectively. The obtained results proved that sandblasting negatively affected the corrosion resistance of S355J2 steel and subsequently created manganese phosphate layer.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ragu Nathan S.; Balasubramanian V.; Malarvizhi S.; Rao A.G. Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints. Def. Technol. 2015 11 308-317.

  • 2. Chintapalli R.K.; Marro F.G.; Jimenez-Pique E.; Anglada M. Phase transformation and subsurface damage in 3Y-TZP after sandblasting. Dent. Mater. 2013 29 566-572.

  • 3. Chintapalli R.K.; Mestra Rodriguez A.; Garcia Marro F.; Anglada M. Effect of sandblasting and residual stress on strength of zirconia for restorative dentistry applications. J. Mech. Behav. Biomed. 2014 29 126-137.

  • 4. Raykowski A.; Hader M.; Maragno B.; Spelt J.K. Blast cleaning of gas turbine components: deposit removal and substrate deformation. Wear. 2001 249 126-131.

  • 5. Wang X.Y.; Li D.Y. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel. Electrochim. Acta 2002 47 3939-3947.

  • 6. Trško L.; Bokůvka O.; Nový F.; Guagliano M. Effect of severe shot peening on ultra-high-cycle fatigue of a lowalloy steel. Mater. Des. 2014 57 103-113.

  • 7. Geng S.; Sun J.; Guo L. Effect of sandblasting and subsequent acid pickling and passivation on the microstructure and corrosion behavior of 316L stainless steel. Mater. and Design. 2015 88 1-7.

  • 8. Galvan-Reyes C.; Fuentes-Aceituno J.C.; Salinas-Rodríguez A. The role of alkalizing agent on the manganese phosphating of a high strength steel part 1: The individual effect of NaOH and NH4OH. Surf. and Coat. Technol. 2016 291 179-188.

  • 9. Banczek E.P.; Rodrigues P.R.P.; Costa I. The effects of niobium and nickel on the corrosion resistance of the zinc phosphate layers. Surf. Coat. Technol. 2008 202 2008-2014.

  • 10. Díaz B.; Freire L.; Mojío M.; Nóvoa X.R. Optimization of conversion coatings based on zinc phosphate on high strength steels with enhanced barrier properties. J. Electroanalyt. Chem. 2015 737 174-183.

  • 11. Galvan-Reyes C.; Salinas-Rodríguez A.; Fuentes-Aceituno J.C. Degradation and crystalline reorganization of hureaulite crystals during the manganese phosphating of a high strength steel. Surf. Coat. Technol. 2015 275 10-20.

  • 12. Weng D.; Jokiel P.; Uebleis A.; Boehni H. Corrosion and protection characteristics of zinc and manganese phosphate coatings. Surf. Coat. Technol. 1997 88 147-156.

  • 13. Sankara Narayanan T.S.N. Infl uence of various factors on phosphatability - An overview. Metal Finish. 1996 94 86-90.

  • 14. Restifo C.M.; Bainter J.C. A new alternative to traditional iron phosphating for ferrous substrates. Metal Finish. 2000 98 44-47.

  • 15. Amini R.; Vakili H.; Ramezanzadeh B. Studying the effects of poly (vinyl) alcohol on the morphology and anti-corrosion performance of phosphate coating applied on steel surface. J. Taiwan Inst. Chem. Eng. 2016 58 542-551.

  • 16. Ghali E.L.; Potvin R.J.A. The mechanism of phosphating of steel. Corros. Sci. 1972 12 583-594.

  • 17. Sadeghimeresht E.; Markocsan N.; Nylén P. A Comparative Study of Corrosion Resistance for HVAF-Sprayed Fe- and Co-Based Coatings. Coatings 2016 6 16.

  • 18. Pastorek F.; Hadzima B.; Doležal P. Electrochemical characteristics of Mg-3Al-1Zn alloy surface with hydroxyapatite coating. Communications. 2012 14 26-30.

  • 19. Malshe V.C.; Sikchi M. Basics of Paint Technology Part 2. Antar Prakash Centre for Yoga SF 19-20 Surya Complex Ranipur Turn Hardwar 249 407 (Uttarakhand) India 2008.

  • 20. Hadzima B.; Mhaede M.; Pastorek F. Electrochemical characteristics of calcium-phosphatized AZ31 Magnesium alloy in 0.9% NaCl Solution. J. Mat. Sci.: Mat. Med. 2014 25 1227-1237.

  • 21. Jiang X.P.; Wang X.Y.; Li J.X.; Li D.Y.; Man C.-S.; Shepard M.J.; Zhai T. Enhancement of fatigue and corrosion properties of pure Ti by sandblasting. Mat. Sci. Eng. A. 2006 429 30-35.

  • 22. Mhaede M.; Pastorek F.; Hadzima B. Infl uence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihidrate (DCPD). Mat. Sci. Eng. 2014 39 330-335.

  • 23. Frankel G.S. Electrochemical techniques in corrosion: status limitations and needs. J. ASTM Int. 2008 5 3-40.

  • 24. Ariza E.; Rocha L.A. Evaluation of corrosion resistance of multi-layered Ti/glass-ceramic interfaces by electrochemical impedance spectroscopy. Mater. Sci. Forum. 2005. 492-493 189-194.

  • 25. Han X.G.; Zhu F.; Zhu X.P.; Lei M.K.; Xu J.J. Electrochemical corrosion behavior of modifi ed MAO fi lm on magnesium alloy AZ31 irradiated by high-intensity pulsed ion beam. Surf Coat Technol. 2013 228 164-170.

  • 26. Skublova L.; Hadzima B.; Borbas L.; Vitosova M. The infl uence of temperature on corrosion properties of titanium and stainless steel biomaterials. Mater Eng. 2008 15 18-22.

Impact Factor

CiteScore 2018: 0.25

SCImago Journal Rank (SJR) 2018: 0.164
Source Normalized Impact per Paper (SNIP) 2018: 0.286

Cited By
Gesamte Zeit Letztes Jahr Letzte 30 Tage
Abstract Views 0 0 0
Full Text Views 219 55 1
PDF Downloads 104 46 5