Open Access

Electrochemical corrosion characteristics of phosphated S355J2 steel in sulfate environment


Cite

1. Ragu Nathan, S.; Balasubramanian, V.; Malarvizhi, S.; Rao, A.G. Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints. Def. Technol. 2015, 11, 308-317.Search in Google Scholar

2. Chintapalli, R.K.; Marro, F.G.; Jimenez-Pique, E.; Anglada, M. Phase transformation and subsurface damage in 3Y-TZP after sandblasting. Dent. Mater. 2013, 29, 566-572.Search in Google Scholar

3. Chintapalli, R.K.; Mestra Rodriguez, A.; Garcia Marro, F.; Anglada, M. Effect of sandblasting and residual stress on strength of zirconia for restorative dentistry applications. J. Mech. Behav. Biomed. 2014, 29, 126-137.Search in Google Scholar

4. Raykowski, A.; Hader, M.; Maragno, B.; Spelt, J.K. Blast cleaning of gas turbine components: deposit removal and substrate deformation. Wear. 2001, 249, 126-131.Search in Google Scholar

5. Wang, X.Y.; Li, D.Y. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel. Electrochim. Acta 2002, 47, 3939-3947.Search in Google Scholar

6. Trško, L.; Bokůvka, O.; Nový, F.; Guagliano, M. Effect of severe shot peening on ultra-high-cycle fatigue of a lowalloy steel. Mater. Des. 2014, 57, 103-113.Search in Google Scholar

7. Geng, S.; Sun, J.; Guo, L. Effect of sandblasting and subsequent acid pickling and passivation on the microstructure and corrosion behavior of 316L stainless steel. Mater. and Design. 2015, 88, 1-7.Search in Google Scholar

8. Galvan-Reyes, C.; Fuentes-Aceituno, J.C.; Salinas-Rodríguez, A. The role of alkalizing agent on the manganese phosphating of a high strength steel part 1: The individual effect of NaOH and NH4OH. Surf. and Coat. Technol. 2016, 291, 179-188.Search in Google Scholar

9. Banczek, E.P.; Rodrigues, P.R.P.; Costa, I. The effects of niobium and nickel on the corrosion resistance of the zinc phosphate layers. Surf. Coat. Technol. 2008, 202, 2008-2014.Search in Google Scholar

10. Díaz, B.; Freire, L.; Mojío, M.; Nóvoa, X.R. Optimization of conversion coatings based on zinc phosphate on high strength steels, with enhanced barrier properties. J. Electroanalyt. Chem. 2015, 737, 174-183.Search in Google Scholar

11. Galvan-Reyes, C.; Salinas-Rodríguez, A.; Fuentes-Aceituno, J.C. Degradation and crystalline reorganization of hureaulite crystals during the manganese phosphating of a high strength steel. Surf. Coat. Technol. 2015, 275, 10-20.Search in Google Scholar

12. Weng, D.; Jokiel, P.; Uebleis, A.; Boehni, H. Corrosion and protection characteristics of zinc and manganese phosphate coatings. Surf. Coat. Technol. 1997, 88, 147-156.Search in Google Scholar

13. Sankara Narayanan, T.S.N. Infl uence of various factors on phosphatability - An overview. Metal Finish. 1996, 94, 86-90.Search in Google Scholar

14. Restifo, C.M.; Bainter, J.C. A new alternative to traditional iron phosphating for ferrous substrates. Metal Finish. 2000, 98, 44-47.Search in Google Scholar

15. Amini, R.; Vakili, H.; Ramezanzadeh, B. Studying the effects of poly (vinyl) alcohol on the morphology and anti-corrosion performance of phosphate coating applied on steel surface. J. Taiwan Inst. Chem. Eng. 2016, 58, 542-551.Search in Google Scholar

16. Ghali, E.L.; Potvin, R.J.A. The mechanism of phosphating of steel. Corros. Sci. 1972, 12, 583-594.Search in Google Scholar

17. Sadeghimeresht, E.; Markocsan, N.; Nylén, P. A Comparative Study of Corrosion Resistance for HVAF-Sprayed Fe- and Co-Based Coatings. Coatings 2016, 6, 16.10.3390/coatings6020016Search in Google Scholar

18. Pastorek, F.; Hadzima, B.; Doležal, P. Electrochemical characteristics of Mg-3Al-1Zn alloy surface with hydroxyapatite coating. Communications. 2012, 14, 26-30.Search in Google Scholar

19. Malshe, V.C.; Sikchi, M. Basics of Paint Technology Part 2. Antar Prakash Centre for Yoga, SF 19-20, Surya Complex, Ranipur Turn, Hardwar 249 407, (Uttarakhand), India, 2008.Search in Google Scholar

20. Hadzima, B.; Mhaede, M.; Pastorek, F. Electrochemical characteristics of calcium-phosphatized AZ31 Magnesium alloy in 0.9% NaCl Solution. J. Mat. Sci.: Mat. Med. 2014, 25, 1227-1237.Search in Google Scholar

21. Jiang, X.P.; Wang, X.Y.; Li, J.X.; Li, D.Y.; Man, C.-S.; Shepard, M.J.; Zhai, T. Enhancement of fatigue and corrosion properties of pure Ti by sandblasting. Mat. Sci. Eng. A. 2006, 429, 30-35.Search in Google Scholar

22. Mhaede, M.; Pastorek, F.; Hadzima, B. Infl uence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihidrate (DCPD). Mat. Sci. Eng. 2014, 39, 330-335.Search in Google Scholar

23. Frankel, G.S. Electrochemical techniques in corrosion: status, limitations, and needs. J. ASTM Int. 2008, 5, 3-40.Search in Google Scholar

24. Ariza, E.; Rocha, L.A. Evaluation of corrosion resistance of multi-layered Ti/glass-ceramic interfaces by electrochemical impedance spectroscopy. Mater. Sci. Forum. 2005,. 492-493, 189-194.Search in Google Scholar

25. Han, X.G.; Zhu, F.; Zhu, X.P.; Lei, M.K.; Xu, J.J. Electrochemical corrosion behavior of modifi ed MAO fi lm on magnesium alloy AZ31 irradiated by high-intensity pulsed ion beam. Surf Coat Technol. 2013, 228, 164-170.Search in Google Scholar

26. Skublova, L.; Hadzima, B.; Borbas, L.; Vitosova, M. The infl uence of temperature on corrosion properties of titanium and stainless steel biomaterials. Mater Eng. 2008, 15, 18-22.Search in Google Scholar

eISSN:
1804-1213
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass