Is the Short Version of the Big Five Inventory (BFI-S) Applicable for Use in Telephone Surveys?

Open access

Abstract

The inclusion of psychological indicators in survey research has become more common because they offer the possibility of explaining much of the variance in sociological variables. The Big Five personality dimensions in particular are often used to explain opinions, attitudes, and behavior. However, the short versions of the Big Five Inventory (BFI-S) were developed for face-to-face surveys. Studies have shown distortions in the identification of the Big Five factor structure in subsamples of older respondents in landline telephone surveys. We applied the same BFI-S but with a shorter rating scale in a telephone survey with two subsamples (landline and mobile phone). Using exploratory structural equation modeling (ESEM), we identified the Big Five structure in the subsamples and the age groups. This finding leads us to conclude that the BFI-S is a powerful means of including personality characteristics in telephone surveys.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Asparouhov T. and B. Muthen. 2008. “Multilevel Mixture Models.” In Advances in Latent Variable Mixture Models edited by G.R. Hancock and K.M. Samuelsen 27–51. Charlotte NC: Information Age Publishing.

  • Bentler P. 1990. “Comparative Fit Indexes in Structural Models.” Psychological Bulletin 107: 238–246.

  • Brannick M.T. 1995. “Critical Comments on Applying Covariance Structure Modeling.” Journal of Organizational Behavior 16: 201–213. Doi: http://dx.doi.org/10.1002/job.4030160303.

  • Browne M.W. 2001. “An Overview of Analytic Rotation in Exploratory Factor Analysis.” Multivariate Behavioral Research 36: 111–150. Doi: http://dx.doi.org/10.1207/S15327906MBR3601_05.

  • Caspi A. B.W. Roberts and R.L. Shiner. 2005. “Personality Development: Stability and Change.” Annual Review of Psychology 56: 453–484. Doi: http://dx.doi.org/10.1146/annurev.psych.55.090902.141913.

  • Chen F.F. 2007. “Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance.” Structural Equation Modeling 14: 464–504. Doi: http://dx.doi.org/10.1080/10705510701301834.

  • Cheung G.W. and R.B. Rensvold. 1999. “Testing Factorial Invariance Across Groups: A Reconceptualization and Proposed New Method.” Journal of Management 25: 1–27. Doi: http://dx.doi.org/10.1177/014920639902500101.

  • Dehne M. and J. Schupp. 2007. “Persönlichkeitsmerkmale im Sozio-ökonomischen Panel (SOEP) – Konzept Umsetzung und empirische Eigenschaften”. DIW Research Notes 26. Berlin: DIW Berlin.

  • Gabler S. and Ö. Ayhan. 2007. “Gewichtung bei Erhebungen im Festnetz und über Mobilfunk: Ein Dual-Frame Ansatz”. In Mobilfunktelefonie – Eine Herausforderung für die Umfrageforschung edited by S. Gabler and S. Häder 39–45 ZUMANachrichten Spezial Vol. 13. Mannheim: GESIS.

  • Gabler S. and S. Häder. 2002. “Idiosyncrasies in Telephone Sampling – The Case of Germany.” IJPOR 14: 339–345. Doi: http://dx.doi.org/10.1093/ijpor/14.3.339.

  • Gabler S. S. Haeder I. Lehnhoff and E. Mardian. 2012. “Weighting for Unequal Inclusion Probabilities and Nonresponse in Dual Frame Telephone Surveys.” In Telephone Surveys in Europe edited by S. Häder M. Häder and M. Kühne 147–168. Heidelberg: Springer Verlag.

  • Gerlitz J. and J. Schupp. 2005. “Zur Erhebung der Big-Five-basierten Persönlichkeitsmerkmale im SOEP”. DIW Research Notes 4. Berlin: DIW Berlin.

  • Goebel J. M. Grabka P. Krause M. Kroh R. Pischner I. Sieber and M. Spiess. 2008. “Mikrodaten Gewichtung und Datenstruktur der Längsschnittstudie Sozio-oekonomisches Panel (SOEP).” In Vierteljahreshefte zur Wirtschaftsforschung Vol. 3 edited by J. Frick O. Groh-Samberg J. Schupp and K. Spiess 77–109. Berlin: Duncker & Humblot. Doi: http://dx.doi.org/10.3790/vjh.77.3.77.

  • Goldberg L.R. D. Sweeney P.F. Merenda and J.E. Hughes. 1998. “Demographic Variables and Personality: The Effects of Gender Age Education and Ethnic/Racial Status on Self-Descriptions of Personality Attributes.” Personality and Individual Differences 24: 393–403. Doi: http://dx.doi.org/10.1016/S0191-8869(97)00110-4.

  • Gosling S. P. Rentfrow and W. Swann. 2003. “A Very Brief Measure of the Big Five Personality Domains.” Journal of Research in Personality 37: 504–528. Doi: http://dx.doi.org/10.1016/S0092-6566(03)00046-1)00046-1.

  • Häder M. 2012. “Data Quality in Telephone Surveys via Mobile and Landline Phone.” In Telephone Surveys in Europe edited by S. Häder M. Häder and M. Kühne 247–262. Heidelberg: Springer.

  • Häder M. and M. Kühne. 2010. “Mobiltelefonerfahrung und Antwortqualität bei Umfragen.” Methoden Daten Analysen 4: 105–112.

  • Häder S. I. Lehnhoff and E. Mardian. 2010. “Mobile Phone Surveys: Empirical Findings from a Research Project.” ASK. Society. Research. Methods 19: 3–19.

  • Heaven P. and S. Bucci. 2001. “Right-Wing Authoritarianism Social Dominance Orientation and Personality: An Analysis Using the IPIP Measure.” European Journal of Personality 15: 49–56. Doi: http://dx.doi.org/10.1002/per.389.

  • Hopwood C.J. and M.B. Donnellan. 2010. “How Should the Internal Structure of Personality Inventories be Evaluated?” Personality and Social Psychology Review 14: 332–346. Doi: http://dx.doi.org/10.1177/1088868310361240.

  • Hu L. and P.M. Bentler. 1999. “Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives.” Structural Equation Modeling 6: 1–55. Doi: http://dx.doi.org/10.1080/10705519909540118.

  • Koch A. 1998. “Wenn ‘mehr’ nicht gleichbedeutend mit ‘besser’ ist: Ausschöpfungsquoten und Stichprobenverzerrungen in allgemeinen Bevölkerungsumfragen.” ZUMANachrichten 42: 66–90.

  • Kühne M. M. Häder and T. Schlinzig. 2009. “Mode-Effekte bei telefonischen Befragungen über das Festnetz und den Mobilfunk: Auswirkungen auf die Datenqualität.” In Umfrageforschung. Grenzen und Herausforderung edited by M. Weichbold C. Wolf and J. Bacher 45–62. Wiesbaden: VS Verlag für Sozialwissenschaften.

  • Lang F.R. O. Lüdtke and J.B. Asendorpf. 2001. “Testgüte und psychometrische Äquivalenz der deutschen Version des Big Five Inventory (BFI) bei jungen mittelalten und alten Erwachsenen.” Diagnostica 47: 111–121. Doi: http://dx.doi.org/10.1026//0012-1924.47.3.111.

  • Lang F.R. D. John O. Lüdtke J. Schupp and G.B. Wagner. 2011. “Short Assessment of the Big Five: Robust Across Survey Methods Except Telephone Interviewing.” Behavior Research Methods 43: 548 – 567. Doi: http://dx.doi.org/10.3758/s13428-011-0066-z.

  • Little R.J.A. 1988. “A Test of Missing Completely at Random for Multivariate Data With Missing Values.” Journal of the American Statistical Association 83: 1198–1202. Doi: http://dx.doi.org/10.2307/2290157.

  • Marsh H.W. J.R. Balla and R.P. McDonald. 1988. “Goodness of Fit Indexes in Confirmatory Factor Analysis: The Effect of Sample Size.” Psychological Bulletin 103: 391–410. Doi: http://dx.doi.org/10.1037//0033-2909.103.3.391.

  • Marsh H.W. K.-T. Hau and Z. Wen. 2004. “In Search of Golden Rules: Comment on Hypothesis-Testing Approaches to Setting Cutoff Values for Fit Indexes and Dangers of Overgeneralizing Hu and Bentler’s (1999) findings.” Structural Equation Modeling 11: 320–341. Doi: http://dx.doi.org/10.1207/s15328007sem1103_2.

  • Marsh H.W. B. Muthén A. Asparouhov O. Lüdtke A. Robitzsch A.J.S. Morin and U. Trautwein. 2009. “Exploratory Structural Equation Modeling Integrating CFA and EFA: Application to Students’ Evaluations of University Teaching.” Structural Equation Modeling 16: 439–476. Doi: http://dx.doi.org/10.1080/10705510903008220.

  • Marsh H.W. O. Lüdtke B. Muthén T. Asparouhov A.J.S. Morin U. Trautwein and B. Nagengast. 2010. “A New Look at the Big Five Factor Structure Through Exploratory Structural Equation Modeling.” Psychological Assessment 22: 471–491. Doi: http://dx.doi.org/10.1037/a0019227.

  • Marsh H.W. B. Nagengast and A.J.S. Morin. 2013. “Measurement Invariance of Big-Five Factors Over the Life Span: ESEM Test of Gender Age Plasticity Maturity and La Dolce Vita Effects.” Developmental Psychology 49: 1194–1218. Doi: http://dx.doi.org/10.1037/a0026913.

  • Muthén L.K. and B.O. Muthén. 1998–2012. Mplus User’s Guide 7th ed. Los Angeles CA: Muthén and Muthén.

  • Rammstedt B. 2007a. “Welche Vorhersagekraft hat die individuelle Persönlichkeit für inhaltliche sozialwissenschaftliche Variablen?” ZUMA-Arbeitsbericht 2007/01.

  • Rammstedt B. 2007b. “The 10-Item Big Five Inventory (BFI-10): Norm Values and Investigation of Socio-Demographic Effects Based on a German Population Representative Sample.” European Journal of Psychological Assessment 23: 193–201. Doi: http://dx.doi.org/10.1027/1015-5759.23.3.193.

  • Rammstedt B. L.R. Goldberg and I. Borg. 2010. “The Measurement Equivalence of Big Five Factor Markers for Persons with Different Levels of Education.” Journal of Research in Personality 44: 53–61. Doi: http://dx.doi.org/10.1016/j.jrp.2009.10.005.

  • Rammstedt B. and O.P. John. 2007. “Measuring Personality in One Minute or Less: A 10-Item Short Version of the Big Five Inventory in English and German.” Journal of Research in Personality 41: 203–212. Doi: http://dx.doi.org/10.1016/j.jrp.2006.02.001.

  • Rammstedt B. C. Kemper M. Klein C. Beierlein and A. Kovaleva. 2013. “A Short Scale for Assessing the Big Five Dimensions of Personality: 10 Item Big Five Inventory (BFI-10).” Methods Data Analyses 7: 233–249. Doi: http://dx.doi.org/10.12758/mda.2013.013.

  • Saucier G. 2000. “Isms and the Structure of Social Attitudes.” Journal of Personality and Social Psychology 78: 366–385. Doi: http://dx.doi.org/10.1037//0022-3514.78.2.366.

  • Schneiderat G. and T. Schlinzig. 2012. “Mobile- and Landline-Onlys in Dual-Frame-Approaches: Effects on Sample Quality.” In Telephone Surveys in Europe edited by S. Häder M. Häder and M. Kühne 122–143. Heidelberg: Springer.

  • Taylor M.F. J. Brice N. Buck and E. Prentice-Lane. 2010. British Household Panel Survey User Manual: Volume A. Introduction Technical Report and Appendices. Colchester: University of Essex.

  • Toepoel V. and P. Lugtig. 2015. “Online Surveys are Mixed-Device Surveys. Issues Associated With the Use of Different (Mobile) Devices in Web Surveys.” Methods Data Analyses 9: 155–162. Doi: http://dx.doi.org/10.12758/mda.2015.009.

  • Tucker L. and C. Lewis. 1973. “A Reliability Coefficient for Maximum Likelihood Factor Analysis.” Psychometrika 38: 1–10. Doi: http://dx.doi.org/10.1007/BF02291170.

  • Van Hiel A. M. Pandelaere and B. Duriez. 2004. “The Impact of Need for Closure on Conservative Beliefs and Racism: Differential Mediation by Authoritarian Submission and Authoritarian Dominance.” Personality and Social Psychology Bulletin 30: 824–837. Doi: http://dx.doi.org/10.1177/0146167204264333.

  • West S.G. J.F. Finch and P.J. Curran. 1995. “Structural Equation Modeling with Nonnormal Variables: Problems and Remedies.” In Structural Equation Modeling: Concepts Issues and Applications edited by R.H. Hoyle 37–55. Thousand Oaks CA: Sage.

  • Ximénez C. 2006. “A Monte Carlo Study of Recovery of Weak Factor Loadings in Confirmatory Factor Analysis.” Structural Equation Modeling 13: 587–614. Doi: http://dx.doi.org/10.1207/s15328007sem1304_5.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.837
5-year IMPACT FACTOR: 0.934

CiteScore 2018: 1.04

SCImago Journal Rank (SJR) 2018: 0.963
Source Normalized Impact per Paper (SNIP) 2018: 1.020

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1157 421 13
PDF Downloads 558 244 17