Numerical simulation study on bowtie antenna-based time reversal mirror for super-resolution target detection

Baidenger Agyekum Twumasi 1 , 2  and Jia-Lin Li 1
  • 1 School of Physics, University of Electronic Science and Technology of China, 610054, Chengdu, China
  • 2 Department of Electrical/Electronic Engineering, Ho Technical University (HTU), Ho, Ghana

Abstract

Bowtie antenna-based time reversal mirror (TRM), incorporating with randomly distributed and arbitrarily shaped wire metamaterials medium, is proposed to realize super-resolution target detection. The achieved performance for standard and scatterer bowtie antenna TRM is compared and discussed. The dual-band bowtie antennas resonate at 2.45 GHz and 5.2 GHz and a super-resolution of 0.0817 of the free-space wavelength at 2.45 GHz has been achieved. For the first time, studies show that the TRM with microstructure perturbations (namely scatterers) can enhance the resolution in some cases. Proposing a method of super-resolving transmission of electromagnetic waves is very important to realize multi-independent channels in a compact space for the related applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J. L. Li, B. Z. Wang, D. S. Zhao, and S. Ding, “Recent Researches on Electromagnetic Time Reversal in UESTC”, IEEE iWEM – IEEE International Workshop on Electromagnetics: Applications Student Innovation Competition, pp. 16-19, 2013.

  • [2] M. Fink, “Time-Reversed Acoustics”, Scientific American, pp. 91–97, Nov 1999.

  • [3] B. Z. Wang, R. Wang, Z. S. Gong, Q. Gao, and X. H. Wang, “Researches on Far-Field Super-Resolution Imaging Based on Time-Reversed Electromagnetics at UESTC”, in IEEE International Conference on Computational Electromagnetics (2016 ICCEM), pp. 319-321, 2016.

  • [4] E. A. Marengo and J. Tu, “Breast Cancer Detection Based on Time Reversal the Optical Theorem”, in Medical Imaging: Ultrasonic Imaging Tomography, p. 941915, March 2015.

  • [5] Y. Chen, E. Gunawan, K. S. Low, S. W. S. Wang, Y. K. Y. Kim, and C. B. S. Soh, “Pulse Design for Time Reversal Method as Applied to Ultra-Wideband Microwave Breast Cancer Detection: A Two-Dimensional Analysis”, IEEE Transactions on Antennas Propagation vol. 55, no, 1, pp. 194-204, 2007.

  • [6] A. Dezfooliyan and A. M. Weiner, “Experimental Investigation of UWB Impulse Response Time Reversal Technique up to 12 GHz: Omnidirectional Directional Antennas”, IEEE Transactions on Antennas Propagation vol. 60, no, 7, pp. 3407-3415, 2012.

  • [7] P. Kosmas, E. Zastrow, S. C. Hagness, and B. Van Veen, “A Computational Study of Time Reversal Techniques for Ultra-Wideband Microwave Hyperthemia Treatment of Breast Cancer”, in IEEE/SP 14th Workshop on Statistical Signal Processing pp. 312-316, Aug 2007.

  • [8] S. Mukherjee, Y. Deng, L. Udpa, S. Udpa, P. Chahal, and E. Rothwell, “Microwave Time Reversal Mirror for Breast Tumor Detection”, in IEEE International Symposium on Antennas Propagation Society (AP-S), pp. 791-792, 2017.

  • [9] W. M. Dyab, T. K. Sarkar, and M. Salazar-palma, “Antenna Reciprocity the Theory of Electromagnetic Time Reversal”, in IEEE International Symposium on Antennas Propagation Society (AP-S), pp. 7-8, 2012.

  • [10] W. G. Dyab, T. K. Sarkar, and M. Salazar-palma, “What is Time Reversal what it Cannot Do?”, in IEEE Conference on Antenna Measurements Applications, pp. 1-3, 2014.

  • [11] J. De Rosny, G. Lerosey, and M. Fink, “Theory of Electromagnetic Time-Reversal Mirrors”, IEEE Transactions on Antennas Propagations vol. 58, no, 10, pp. 3139-3149, 2010.

  • [12] R. J. Potton, “Reciprocity in Optics”, Reports on Progress in Physics vol. 67, no, 5, pp. 717-754, 2004.

  • [13] G. D. Ge, D. Wang, and B. Z. Wang, “Subwavelength Array of Planar Triangle Monopoles with Cross Slots Based on Far-Field Time Reversal”, Progress in Electromagnetics Research vol. 114, pp. 429-441, 2011.

  • [14] S. Ding, B. Z. Wang, G. Ge, and D. Zhao, “Sub-Wavelength Array with Embedded Chirped Delay Lines Bsed on Time Reversal Technique”, IEEE Transactions on Antennas Propagations vol. 61, no, 5, pp. 2868-2873, 2013.

  • [15] C. A. Valagiannopoulos, “Electromagnetic Scattering of the Field of a Metamaterial Slab Antenna by an Arbitrarily Positioned Cluster of Metallic Cylinders”, Progress in Electromagnetics Research vol. 114, pp. 51-66, July 2011.

  • [16] Q. Gao, X. H. Wang, and B. Z. Wang, “Far-Field Sub-Wavelength Imaging of Two-Dimensional Extended Target Aided by Compact Planar Resonant Structures”, IEEE Photonics Journal vol. 10, no. 1, Feb 2018.

  • [17] Z. M. Zhang, B. Z. Wang, G. D. Ge, M. S. Liang, and S. Ding, “Sub-Wavelength Spatial Focusing Property of Time Reversal Electromagnetic Wave in Periodic Metal Wire Array”, in International Conference on Microwave Millimeter Wave Technology (ICMMT) vol. 4, no, 2,, pp. 1330-1332, 2012.

  • [18] C. Yang, M. Zhu, C. Zhou, and D. Zhao, “Sub-Wavelength UWB Antenna Array with Fractal Slots Split Ring Resonators for Time Reversal Super-Resolution Focusing”, in IEEE International Conference on Communication Problem-Solving, pp. 173-175, 2014.

  • [19] R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Far-Field Subwavelength Imaging with Near-Field Resonant Metalens Scanning at Microwave Frequencies”, Scientific Report vol. 5, pp. 1035-1036, 2015.

  • [20] A. Wahab, A. Rasheed, T. Hayat, and R. Nawaz, “Electromagnetic Time Reversal Algorithms Source Localization in Lossy Dielectric Media”, Communications in Theoretical Physics vol. 62, no, 6, pp. 779-789, 2014.

  • [21] W. J. R. Hoefer, “Super Resolution Imaging by Computational Time Reversal in Scattering Media”, in IEEE International Symposium on Antennas Propagation Society (AP-S), pp. 1302-1303, 2015.

  • [22] R. Zhang, W. Shao, and X. Wei, “Sub-Wavelength UWB Antenna Array Design for Super-Resolution”, in Progress in Electromagnetic Research Symposium, pp. 4688, 2016.

  • [23] H. Tu, S. X. Xiao, D. Lesselier, and M. Serhir, “Super-Resolution Characteristics Based on Time-Reversed Single-Frequency Electromagnetic Wave”, Journal of Electromagnetic Waves Applications vol. 30, no, 13, pp, 1670-1680, Sep 2016.

  • [24] H. Tu, S. Xiao, J. Xiong, and B. Wang, “Super-Resolution Frequency Spectrum Characteristics of Micro-Structured Array Based on Time Reversal Electromagnetic Wave”, in Proceedings of the International Symposium on Antennas & Propagation (ISAP) vol. 2, pp. 775–778, Oct 2013.

  • [25] F. Lemoult, G. Lerosey, J. De Rosny, and M. Fink, “Resonant Metalenses for Breaking the Diffraction Barrier”, Physical Review Letters vol. 203901, pp. 1–4, May 2010.

  • [26] B. A. Twumasi and L. Jia-lin, “Bowtie Antenna TRM Design for Biomedical Imaging Using Electromagnetic Time Reversal Technique”, in International Conference on Microwave Millimeter Wave Technology vol. 1, no, 1, pp, 60-62, May 2018.

  • [27] W. B.-Z. and Z. R. Huang Hai-Yan, Ding Shuai, “Split-Ring-Based Metamaterial for Far-Field Subwavelength Focusing Based on Time Reversal”, Chinese Physics B vol. 23, no. 6, 2014.

  • [28] S. Mukherjee, Y. Deng, L. Udpa, S. Udpa, P. Chahal, and E. Rothwell, “Microwave Time Reversal Mirror for Breast Tumor Detection”, in IEEE International Symposium on Antennas Propagation Society International Symposium (AP-S), pp. 791-792, Oct 2017.

OPEN ACCESS

Journal + Issues

Search