“Invariants” in Koffka’s Theory of Constancies in Vision: Highlighting Their Logical Structure and Lasting Value

Open access


By introducing the concept of “invariants”, Koffka (1935) endowed perceptual psychology with a flexible theoretical tool, which is suitable for representing vision situations in which a definite part of the stimulus pattern is relevant but not sufficient to determine a corresponding part of the perceived scene. He characterised his “invariance principle” as a principle conclusively breaking free from the “old constancy hypothesis”, which rigidly surmised point-to-point relations between stimulus and perceptual properties. In this paper, we explain the basic terms and assumptions implicit in Koffka’s concept, by representing them in a set-theoretic framework. Then, we highlight various aspects and implications of the concept in terms of answers to six separate questions: forms of invariants, heuristic paths to them, what is invariant in an invariant, roots of conditional indeterminacy, variability vs. indeterminacy, and overcoming of the indeterminacy. Lastly, we illustrate the lasting value and theoretical power of the concept, by showing that Koffka’s insights relating to it do occur in modern perceptual psychology and by highlighting its role in a model of perceptual transparency.

Beck, J., Prazdny, K., & Ivry, R. (1984). The perception of transparency with achromatic colors. Perception & Psychophysics, 35(5), 407–422.

Bergström, S. S. (1977). Common and relative components of reflected light as information about the illumination, colour, and three-dimensional form of objects. Scandinavian Journal of Psychology, 18(3), 180–186.

Bloj, M. G., & Hurlbert, A. C. (2002). An empirical study of the traditional Mach card effect. Perception, 31(2), 233–246.

Chen, L. (2005). The topological approach to perceptual organization. Visual Cognition, 12(4), 553–637.

Cutting, J. E. (1986). Perception with an eye for motion. Cambridge, MA: MIT Press.

Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In W. Epstein & S. Rogers (Eds.), Perception of space and motion (pp. 69–117). New York, NY: Academic Press.

Da Pos, O., & Burigana, L. (2013). Qualitative inference rules for perceptual transparency. In L. Albertazzi (Ed.), Handbook of experimental phenomenology: Visual perception of shape, space and appearance (pp. 343–367). New York, NY: Wiley.

Dechter, R. (2003). Constraint processing. San Mateo, CA: Morgan Kaufmann.

Epstein, W. (1982). Percept-percept couplings. Perception, 11(1), 75–83.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.

Gilchrist, A. L. (2006). Seeing black and white. Oxford, UK: Oxford University Press.

Gilchrist, A. L., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X., Spehar, B., Annan, V., & Economou, E. (1999). An anchoring theory of lightness perception. Psychological Review, 106(4), 795–834.

Gogel, W. C. (1973). The organization of perceived space. I. Perceptual interactions. Psychologische Forschung, 36(3), 195–221.

Gogel, W. C. (1976). An indirect method of measuring perceived distance from familiar size. Perception & Psychophysics, 20(6), 419–429.

Hatfield, G. C. (2003). Representation and constraints: The inverse problem and the structure of visual space. Acta Psychologica, 114(3), 355–378.

Heidelberger, M. (2010). Functional relations and causality in Fechner and Mach. Philosophical Psychology, 23(2), 163–172.

Hochberg, J. E. (1957). Effects of the Gestalt revolution: The Cornell symposium on perception. Psychological Review, 64(2), 73–84.

Jäkel, F., Singh, M., Wichmann, F. A., & Herzog, M. H. (2016). An overview of quantitative approaches in Gestalt perception. Vision Research, 126, 3–8.

Johansson, G. (1970). On theories for visual space perception. A letter to Gibson. Scandinavian Journal of Psychology, 11(2), 67–74.

Kersten, D., Mamassian, P., & Yuille, A. L. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271–304.

Koenderink, J. J., van Doorn, A. J., Pont, S., & Richards, W. (2008). Gestalt and phenomenal transparency. Journal of the Optical Society of America, Series A, 25(1), 190–202.

Koffka, K. (1935). Principles of Gestalt psychology. New York, NY: Harcourt, Brace and Company.

Kogo, N., Strecha, C., van Gool, L., & Wagemans, J. (2010). Surface construction by a 2-D differentiation-integration process: A neurocomputational model for perceived border ownership, depth, and lightness in Kanizsa figures. Psychological Review, 117(2), 406–439.

Köhler, W. (1913). Über unbemerkte Empfindungen und Urteilstäuschungen. Zeitschrift für Psychologie, 66(Hefte 1 und 2), 51–80.

Marr, D. (1982). Vision. A computational investigation into the human representation and processing of visual information. San Francisco, CA: Freeman.

Metelli, F. (1970). An algebraic development of the theory of perceptual transparency. Ergonomics, 13(1), 59–66.

Neapolitan, R. E. (2004). Learning Bayesian networks. Upper Saddle River, NJ: Pearson Prentice Hall.

Oyama, T. (1969). S-S relations in psychophysics and R-R correlations in phenomenology. Psychologia, 12(1), 17–23.

Poggio, T., Torre, V., & Koch, C. (1985). Computational vision and regularization theory. Nature, 317(No. 6035), 314–319.

Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.

Rock, I. (1997). Indirect perception. Cambridge, MA: MIT Press.

Sarris, V. (2006). Relational psychophysics in humans and animals: A comparative developmental approach. London, UK: Psychology Press.

Sarris, V. (2012). Epilogue: Max Wertheimer in Frankfurt and thereafter. In L. Spillmann (Ed.), On perceived motion and figural organization (pp. 253–265). Cambridge, MA: MIT Press.

Savardi, U., & Bianchi, I. (2012). Coupling Epstein’s and Bozzi’s “percept-percept coupling”. Gestalt Theory, 34(2), 191–200.

Sinico, M. (2013). Epistemic line of explanation for experimental phenomenology. Gestalt Theory, 35(4), 365–376.

Spillmann, L. (2012). The current status of Gestalt rules in perceptual research: Psychophysics and neurophysiology. In L. Spillmann (Ed.), On perceived motion and figural organization (pp. 191–251). Cambridge, MA: MIT Press.

Todd, J. T., Chen, L., & Norman, J. F. (1998). On the relative salience of Euclidean, affine, and topological structure for 3-D form discrimination. Perception, 27(3), 273–282.

Trommershäuser, J., Körding, K. P., & Landy, M. S. (Eds.). (2011). Sensory cue integration. Oxford, UK: Oxford University Press.

Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012a). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychological Bulletin, 138(6), 1172–1217.

Wagemans, J., Feldman, J., Gepshtein, S., Kimchi, R., Pomerantz, J. R., van der Helm, P. A., & van Leeuwen, C. (2012b). A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. Psychological Bulletin, 138(6), 1218–1252.

Gestalt Theory

An International Multidisciplinary Journal

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 102 102 13
PDF Downloads 33 33 7