The quality of carrot (Daucus carota L.) cultivated in the field depending on iodine and selenium fertilization

Open access


The aim of the study was to evaluate the influence of various chemical forms of iodine (I and IO3) and selenium (SeO32− and SeO42−) on the nutritional and health-promoting quality of carrot (Daucus carota L.) storage roots. The experiment (conducted in 2012-2014) comprised the soil fertilization of carrot ‘Kazan’ F1 in the following combinations: 1. Control, 2. KI, 3. KIO3, 4. Na2SeO4, 5. Na2SeO3, 6. KI + Na2SeO4, 7. KIO3 + Na2SeO4, 8. KI + Na2SeO3, 9. KIO3+ Na2SeO3. Iodine and selenium were applied twice: before sowing and as top dressing in a total dose of 5 kg I ha−1 and 1 kg Se ha−1. No significant influence of iodine and selenium fertilization was noted with respect to average root weight and leaf yield. Each year, the application of KI + Na2SeO4 negatively affected the content of glucose and total sugars in carrot. An increased sucrose level was noted in the roots of plants treated with KIO3 + Na2SeO4, with a total sugar concentration comparable to the control. Irrespective of the year, carrots fertilized with KI were characterized by the highest accumulation of nitrates (III) – NO2 in roots. The simultaneous introduction of iodine and selenium compounds (KI + Na2SeO4, KIO3 + Na2SeO4, KI + Na2SeO3 and KIO3 + Na2SeO3) into the soil reduced the content of nitrates (III) in carrot as compared to combinations with the individual application of these compounds. The influence of the tested factors on other analysed parameters (the content of dry weight, nitrates (V), chlorides, oxalates, citrates, free amino acids, carotenoids, phenolic compounds, phenylpropanoids, flavonols and anthocyanins as well as free radical scavenging activity (DPPH) was rather year-dependent.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ashworth D.J. Shaw G. 2006. A comparison of the soil migration and plant uptake of radioactive chlorine and iodine from contaminated groundwater. J. Environ. Radioact. 89: 61-80.

  • Ashworth D.J. Shaw G. Butler A.P. Ciciani L. 2003. Soil transport and plant uptake of radio-iodine from near-surface groundwater. J. Environ. Radioact. 70: 99-114.

  • Baranska M. Schulz H. Baranski R. Nothnagel T. Christensen L.P. 2005. In situ simultaneous analysis of polyacetylenes carotenoids and polysaccharides in carrot roots. J. Agric. Food Chem. 53(17): 6565-6571.

  • Baranska M. Baranski R. Schulz H. Nothnagel T. 2006. Tissue-specific accumulation of carotenoids in carrot roots. Planta 224(5): 1028-1037.

  • Baranski R. Allender C. Klimek-Chodacka M. 2012. Towards better tasting and more nutritious carrots: Carotenoid and sugar content variation in carrot genetic resources. Food Res. Inter. 47(2): 182-187.

  • Barber M.J. Notton B.A. 1990. Spinach nitrate reductase – effects of ionic strength and pH on the full and partial 1. Enzyme activities. Plant Physiol. 93: 537-540.

  • Blasco A. Rios J.J. Cervilla L.M. Sanchez-Rodriguez E. Rubio-Wilhelmi M.M. Rosales M.A. et al. 2011a. Iodine application affects nitrogen-use efficiency of lettuce plants (Lactuca sativa L.). Acta Agric. Scand. 61(4): 378-383.

  • Blasco B. Rios J.J. Leyva R. Cervilla L.M. Sanchez-Rodriguez E. Rubio-Wilhelmi et al. 2010. Does iodine biofortification affect oxidative metabolism in lettuce plants? Biol. Trace Elem. Res. 142(3): 831-842.

  • Blasco B. Ríos J.J. Sánchez-Rodríguez E. Rubio-Wilhelmi M.M. Leyva R. Romero L. Ruiz J.M. 2012. Study of the interactions between iodine and mineral nutrients in lettuce plants. J. Plant Nut. 35(13): 958-1969.

  • Bogdanov S. 2002. Harmonised methods of the International Honey Commission. Int. Honey Comm.: 1-62.

  • Cebulak T. Sady W. 2000. Effect of cultivation methods on nutritive compounds in the carrot. Folia Hort. 12(1): 77-84.

  • Dai J.L. Zhu Y.G. Zhang M. Huang Y.Z. 2004. Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol. Trace Elem. Res. 101: 265-276.

  • Eticha D. Zahn M. Bremer M. Yang Z. Rangel A.F. Rao I.M. Horst W.J. 2010. Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Ann. Bot. 105(7): 1119-1128.

  • Fakumoto L. Mazza G. 2000. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 48(8): 3597-3604.

  • Gajewski M. Szymczak P. Bajer M. 2009a. The accumulation of chemical compounds in storage roots by carrots of different cultivars during vegetation period. Acta Sci. Pol. Hortorum Cultus 8(4): 69-78.

  • Gajewski M. Węglarz Z. Wereda A. Bajer M. Kuczkowska A. Majewski M. 2010. Carotenoid accumulation by carrot storage roots in relation to nitrogen fertilization level. Not. Bot. Hort. Agrobot. Cluj 38(1): 71-75.

  • Gajewski M. Szymczak P. Bajer M. Sereda A. 2011. Accumulation of chemical compounds in carrot storage roots under different light conditions. Ann. Warsaw Univ. Life Sci. – SGGW Horticult. Landsc. Architect. 32: 15-23.

  • Gajewski M. Węglarz Z. Sereda A. Bajer M. Kuczkowska A. Majewski M. 2009b. Quality of carrots grown for processing as affected by nitrogen fertilization and harvest term. Veg. Crop. Res. Bull. 70: 135-144.

  • GUS 2005. Environment Protection Information and statistical analysis. Cent. Stat. Off. Pol. Wars. (in Polish).

  • Hawrylak-Nowak B. Matraszek R. Pogorzelec M. 2015. The dual effects of two inorganic selenium forms on the growth selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol. Plant. 37: 41-54.

  • Hung C.C. Wong G.T.F. Dunstan W.M. 2005. Iodate reduction activity in nitrate reductase extracts from marine phytoplankton. Bull. Mar. Sci. 76(1): 61-72.

  • Jaworska G. Kmiecik W. 1999. Content of selected mineral compounds nitrates III and V and oxalates in spinach (Spinacia oleracea L.) and New Zealand spinach (Tetragonia expansa Murr.) from spring and autumn growing seasons. EJPAU 2(2). Available online at

  • Kabata-Pendias A. 2011. Trace elements in soil and plants. Fourth Edition CRC Press Taylor and Francis Gr.

  • Kato S. Wachi T. Yoshihira K. Nakagawa T. Ishikawa A. Takagi D. et al. 2013. Rice (Oryza sativa L.) roots have iodate reduction activity in response to iodine. Front. Plant Sci. 4:227

  • Kopsell D.A. Kopsell D.E. 2007. Selenium. In: Handbook of Plant Nutrition. A.V. Barker and D.J Pilbeam (eds) CRC Press Taylor & Francis Gr.

  • Korkina L.G. 2007. Phenylpropanoids as naturally occurring antioxidants: From plant defense to human health. Cell. Mol. Biol. 53(1): 15-25.

  • Koyama H. Takita E. Kawamura A. Hara T. Shibata D. 1999. Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Phys. 40(5): 482-488.

  • Lawson P.G. Daum D. Czauderna R. Meuser H. Härtling J.W. 2015. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front. Plant Sci. 6:450 doi: 10.3389/fpls.2015.00450.

  • Longchamp M. Castrec-Rouelle M. Biron P. Bariac T. 2015. Variations in the accumulation localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem. 182: 128-135.

  • Mao H. Wang J. Wang Z. Zan Y. Lyons G. Zou C. 2014. Using agronomic biofortification to boost zinc selenium and iodine concentrations of food crops grown on the loess plateau in China. J. Soil Sci. Plant Nut. 14 (2): 459-470.

  • Michalak A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 15(4): 523-530.

  • Nabrzyski M. Gajewska R. 1993. The content of nitrates and nitrites in fruits vegetables and other foodstuffs. Roczniki PZH 45(3): 167-180.

  • Ohno T. Koyama H. Hara T. 2003. Characterization of citrate transport through the plasma membrane in a carrot mutant cell line with enhanced citrate excretion. Plant Cell Physiol. 44(2): 156-162.

  • Pekkarinen S. Stockmann H. Schwarz K. Heinnonen M. Hopia A. 1999. Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate. J. Agric. Food Chem. 47(8): 3036-3043.

  • Przybysz A. Wrochna M. Małecka-Przybysz M. Gawrońska H. Gawroński S.W. 2016. The effects of Mg enrichment of vegetable sprouts on Mg concentration yield and ROS generation. J. Sci. Food Agric. 96: 3469-3476.

  • Quilitzsch R. Baranska M. Schulz H. Hoberg E. 2005. Fast determination of carrot quality by spectroscopy methods in the UV-VIS NIR and IR range. J. Appl. Bot. Food Qual. 79(3): 163.

  • Rhew R.C. Østergaard L. Saltzman E.S. Yanofsky M.F. 2003. Genetic control of methyl halide production in Arabidopsis. Curr. Biol. 13: 1809-1813.

  • Ríos J.J. Rosales M.A. Blasco B. Cervilla L.M. Romero L. Ruiz J.M. 2008. Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hort. 116: 248-255.

  • Ríos J.J. Blasco B. Cervilla L.M. Rubio-Wilhelmi M.M. Rosales M.A. Sánchez-Rodríguez et. al. 2010. Nitrogen-use efficiency in relation to different forms and application rates of Se in lettuce plants. J. Plant Grow. Reg. 29: 164-170.

  • Rosenfeld H.J. Samuelsen R.T. Lea P. 1998a. Relationship between physical and chemical characteristic of carrots grown at northern latitudes. J. Hort. Sci. Biotech. 73(2): 265-273.

  • Rosenfeld H.J. Samuelsen R.T. Lea P. 1998b. The effect of temperature on sensory quality chemical composition and growth of carrots (Daucus carota L.) I. Constant diurnal temperature. J. Hort. Sci. Biotech. 73(2): 275-288.

  • Rosenfeld H.J. Samuelsen R.T. Lea P. 1998c. The effect of temperature on sensory quality chemical composition and growth of carrots (Daucus carota L.) II. Constant diurnal temperatures under seasonal light regimes. J. Hort. Sci. Biotech. 73(5): 578-588.

  • Rożek S. Leja M. Wojciechowska R. 2000. Effect of differentiated nitrogen fertilization on changes of certain compounds in stored carrot roots. Folia Hort. 12(2): 21-34.

  • Sady W. Cebulak T. 2000. The effect of irrigation and cultivation methods on some mineral compounds in storage roots of the carrot. Folia Hort. 12(2): 35-41.

  • Smoleń S. Rożek S. Strzetelski P. Ledwożyw I. 2011a. Preliminary evaluation of the influence of soil fertilization and foliar nutrition with iodine on the effectiveness of iodine biofortification and mineral composition of carrot. J. Element. 16(1): 103-114.

  • Smoleń S. Sady W. Rożek S. Ledwożyw I. Strzetelski P. 2011b. Preliminary evaluation of the influence of iodine and nitrogen fertilization on the effectiveness of iodine biofortification and mineral composition of carrot storage roots. J. Element. 16(2): 275-285.

  • Smoleń S. Kowalska I. Sady W. 2014a. Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Sci. Hort. 166: 9-16.

  • Smoleń S. Sady W. Ledwożyw-Smoleń I. Strzetelski P. Liszka-Skoczylas M. Rożek S. 2014b. Quality of fresh and stored carrots depending on iodine and nitrogen fertilization. Food Chem. 159: 316-322.

  • Smoleń S. Sady W. Strzetelski P. Rożek S. Ledwożyw I. 2009. The effect of iodine and nitrogen fertilization on quantity and quality of carrot yield well as on biological quality carrot. Envir. Prot. Nat. Resourc. 40: 286-292 (in Polish with English abstract).

  • Smoleń S. Skoczylas Ł. Rakoczy R. Ledwożyw-Smoleń I. Liszka-Skoczylas M. Kopeć A. et al. 2015. Selected aspects of nitrogen metabolism and quality of field-grown lettuce (Lactuca sativa L.) depending on the diversified fertilization with iodine and selenium compounds. Acta Sci. Pol. Hortorum Cultus 14(5): 159-175.

  • Smoleń S. Skoczylas Ł. Ledwożyw-Smoleń I. Rakoczy R. Kopeć A. Piątkowska E. Bieżanowska-Kopeć R. et al. 2016a. Biofortification of carrot (Daucus carota L.) with iodine and selenium in a field experiment. Front. Plant Sci. 7:730. doi: 10.3389/fpls.2016.00730

  • Smoleń S. Skoczylas Ł. Ledwożyw-Smoleń I. Rakoczy R. Kopeć A. Piątkowska E. Bieżanowska-Kopeć R. et al. 2016b. Iodine and selenium biofortification of lettuce (Lactuca sativa L.) by soil fertilization with various compounds of these elements. Acta Sci. Pol. Hortorum Cultus 15(5): 69-91.

  • Suojala T. 2000. Pre- and postharvest development of carrot yield and quality. University Of Helsinki Department of Plant Production. Section of Horticulture. Publication 37. Academic Dissertation.

  • Szymczak P. Gajewski M. Radzanowska J. Dąbrowska A. 2007. Sensory quality and consumer liking of carrot cultivars of different genotype. Veg. Crops Res. Bull. 67: 163-176.

  • Tamme T. Reinik M. Roasto M. Juhkam K. Tenno T. Kiis A. 2006. Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population. Food Addit. Contam. 23(4): 355-361.

  • White P.J. Broadley M.R. 2009. Biofortification of crops with seven mineral elements often lacking in human diets – iron zinc copper calcium magnesium selenium and iodine. New Phytol. 182(1): 49-84.

  • Winkel L.H. Vriens B. Jones G.D. Schneider L.S. Pilon-Smits E. Bañuelos G.S. 2015. Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutr. 7(6): 4199-4239.

  • Wińska-Krysiak M. 2006. Calcium transporters in plants. Acta Agrophys. 7(3): 751-762 (in Polish with English abstract).

  • Yuita K. Kihou N. Yabusaki S. Takahashi Y. Saitoh T. Tsumura A. et al. 2005. Behavior of iodine in a forest plot an upland field and a paddy field in the upland area of Tsukuba Japan. Iodine concentration in precipitation irrigation water ponding water and soil w Water to a depth of 2.5 m. Soil Sci. Plant Nutr. 51: 1011-1021.

  • Zhao Y.Q. Zheng J.P. Yang M.W Yang G.D Wu Y.N. Fu F.F. 2011. Speciation analysis of selenium in rice samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 84: 983-988.

  • Zhu Y.G. Huang Y. Hu Y. Liu Y. Christie P. 2004. Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant Soil 261: 99-105.

  • Zhu Y. G. Pilon-Smits E. A. Zhao F. J. Williams P. N. Meharg A.A. 2009. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 14(8): 436-442.

Journal information
Impact Factor

Web of Science, IMPACT FACTOR 2018: 0.532

CiteScore 2018: 0.6

SCImago Journal Rank (SJR) 2018: 0.198
Source Normalized Impact per Paper (SNIP) 2018: 0.644

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 715 365 13
PDF Downloads 407 217 4