Vector AR3-APP – A Good-Practice Example of Learning with Augmented Reality

Karin Langer 1 , Stefanie Lietze 1 , and Gerd Ch. Krizek 1
  • 1 Fachhochschule Technikum Wien, Höchstädtplatz 6, A-1200, Vienna, Austria


After a discussion about the possibilities and status of augmented reality in education, a good practice example of an augmented reality application is presented. This case study examines the use of an augmented reality app in higher education to support abstract STEM content, such as vectors. Based on this example, the implementation of such apps in didactic concepts and self-directed learning will be discussed. Furthermore, aspects of integration into digital learning and teaching will be addressed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Billinghurst, M. (2002). Augmented Reality in Education. New Horizons for Learning, December 2002. Retrieved from

  • 2. Bruner, J. S. (1961). The act of discovery. Harvard Educational Review, 31(1), 21-32.

  • 3. Carvalho, C. V. de Alencar, & Lemos, B.M. (2014). Possibilities of Augmented Reality Use in Mathematics Aiming at a Meaningful Learning. Creative Education, 5, 690–700. doi:10.4236/ce.2014.59081

  • 4. Chao, W., & Chang, R. (2018). Using Augmented Reality to enhance and Engage Students in Learning Mathematics. Advances in Social Sciences Research Journal, 5(12), 455-464. doi:10.14738/assrj.512.5900

  • 5. Chestnut, E. K., Lei, R. F., Leslie, S. J., & Cimpian, A. (2018). The myth that only brilliant people are good at math and its implications for diversity. Education Sciences, 8(2), 65.

  • 6. Coimbra, T., Cardoso, T., & Mateus, A. (2015). Augmented Reality: An Enhancer for Higher Education Students in Math’s Learning? Procedia Computer Science, 67, 332-39. doi:10.1016/j.procs.2015.09.277

  • 7. Estapa, A., & Nadolny, L. (2015). The Effect of an Augmented Reality Enhanced Mathematics Lesson on Student Achievement and Motivation. Journal of STEM Education: Innovations and Research, 16(3), 40-48.

  • 8. Fonseca D., Martí, N., Redondo, E., Navarro, I., & Sánchez, A. (2013). Relationship between student profile, tool use, participation, and academic performance with the use of Augmented Reality technology for visualized architecture models. Computers in Human Behavior, 31, 434-445. doi:10.1016/j.chb.2013.03.006

  • 9. Furner, J.M., & Gonzalez-DeHass, A. (2011). How do students’ mastery and performance goals relate to math anxiety? Eurasia Journal of Mathematics, Science and Technology Education, 7(4), 227-242.

  • 10. Hegedus, S., Laborde, C., Brady, C., Dalton, S., Siller, H.-S., Tabach, M., Trgalova, J., & Armella, L. (2017). Uses of Technology in Upper Secondary Mathematics Education. Springeropen.

  • 11. Ibáñez, M.-B, & Delgado-Kloos, C. (2018). Augmented Reality for STEM Learning: A Systematic Review. Computers & Education, 123, 109-23. doi:10.1016/j.compedu.2018.05.002

  • 12. ITU (2020a). EQUALS Gender Digital Inclusion Map. Retrieved from

  • 13. ITU (2020b). About the ITU-D Digital Inclusion Programme. Retrieved from

  • 14. Kaliisa, R., Palmer, E., & Miller, J. (2017). Mobile learning in higher education: A comparative analysis of developed and developing country contexts. British Journal of Educational Technology, 50(2), 1-16. doi:10.1111/bjet.12583

  • 15. Kaufmann, H., & Schmalstieg, D. (2003). Mathematics and Geometry Education with Collaborative Augmented Reality. Proceedings of SIGGRAPH 2002 – Conference Abstracts and Applications, 37-41.

  • 16. Kellems R. O., Eichelberger C., Cacciatore G., Jensen, M., Frazier, B., Simons, K., & Zaru, M. (2020). Using Video-Based Instruction via Augmented Reality to Teach Mathematics to Middle School Students with Learning Disabilities. Journal of Learning Disabilities, 53(4), 277-291. doi:10.1177/0022219420906452

  • 17. Kerawalla, L., Luckin, R., Selijefot, S., & Woolard, A. (2006). Making it real: Exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10(3-4), 163-174.

  • 18. Kerres, M. (2018). Mediendidaktik: Konzeption und Entwicklung digitaler Lernangebote. De Gruyter.

  • 19. Klopfer, E., & Yoon, S. (2004). Developing games and simulations for today and tomorrow’s tech savvy youth. TechTrends, 49(3), 41-49.

  • 20. Klopfer, E., & Sheldon, J. (2010). Augmenting your own reality: Student authoring of science-based augmented reality games. New Directions for Youth Development, 2010(128), 85-94.

  • 21. Lietze, S., Brezowar, G., & Krizek, G. (2019). Bridging Diversity – A Good Practice Example of Student Support. Proceedings of the INTED2019 Conference, 11th -13th March 2019, Valencia, Spain, 498-502. ISBN: 978-84-09-08619-1

  • 22. Lin, H.K., Chen M., & Chang, C (2015). Assessing the effectiveness of learning solid geometry by using an augmented reality-assisted learning system. Interactive Learning Environments, 23(6), 799–810. doi:10.1080/10494820.2013.817435

  • 23. Martin-Gonzalez, A., Chi-Poot, A. & Uc-Cetina, V. (2016). Usability Evaluation of an Augmented Reality System for Teaching Euclidean Vectors. Innovations in Education and Teaching International, 53(6), 627-636. doi:10.1080/14703297.2015.1108856

  • 24. Martin-Gutierrez, J., Ginters, E., & Perez-Lopez, D. (2012). Improving Strategy of Self-Learning in Engineering: Laboratories with Augmented Reality. Procedia – Social and Behavioral Sciences, 5, 832-839. doi:10.1016/j.sbspro.2012.08.249

  • 25. Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality–virtuality continuum. Telemanipulator and Telepresence Technologies, 2351, 282-292. doi:10.1117/12.197321

  • 26. Mladenović, S., Kuvač, H., & Štula, M. (2012). Virtual Learning Environment. In Information Resources Management Association (Ed.), Virtual Learning Environments: Concepts, Methodologies, Tools and Applications (Vol. 1, pp. 1-16). IGI Global.

  • 27. Onyancha, R. M., Derov, M., & Kinsey, B.L. (2009). Improvements in spatial ability as a result of targeted training and computer-aided design software use: Analyses of object geometries and rotation types. Journal of Engineering Education, 98(2), 157–67. doi:10.1002/j.2168-9830.2009.tb01014.x

  • 28. Osberg, K. (1997). Spatial cognition in the virtual environment, Technical R-97-18. Seattle: HITLab. Retrieved from

  • 29. Prensky, M. (2001). Digital Natives, Digital Immigrants. On the Horizon, 9(5), 1-6. Retrieved from,%20Digital%20Immigrants%20-%20Part1.pdf

  • 30. Preuß, P., & Kauffeld, S. (2019). Visualisierung in der Lehre. In S. Kauffeld, & J. Othmer (Eds.), Handbuch Innovative Lehre (pp. 403-408). Springer. Retrieved from

  • 31. Quintero, E., Salinas, P., González-Mendívil, E., & Ramírez, H. (2015). Augmented Reality App for Calculus: A Proposal for the Development of Spatial Visualization. Procedia Computer Science, 75, 301-305. doi:10.1016/j.procs.2015.12.251

  • 32. Robimo GmbH. (2019). AR3 – Mathematik (be)greifbar. Lehrkonzept für die AR Applikation Vektor AR3 [Unpublished manuscript]. Vienna.

  • 33. Rach, S. (2014). Charakteristika von Lehr-Lern-Prozessen im Mathematikstudium: Bedingungsfaktoren für den Studienerfolg im ersten Semester. Münster; New York: Waxmann Verlag.

  • 34. Rizzo, A. A., Buckwalter, J. G., Bowerly, T., van der Zaag, C., Humphrey, L., Neumann, U., Chua, C., Kyriakakis, C., van Rooyen, & Sisemore, D. (2000). The virtual classroom: a virtual reality environment for the assessment and rehabilitation of attention deficits. CyberPsychology & Behavior, 3(3), 483-499.

  • 35. Ruthven, K. (2018). Instructional activity and student interaction with digital resources. In L. Fan, L. Trouche, C. Qi, S. Rezat, & J. Visnovska (Eds.), Research on Mathematics Textbooks and Teachers’ Resources (pp. 261-275). Cham: Springer.

  • 36. Sala, N. M. (2016). Virtual Reality and Education: Overview Across Different Disciplines. In D.H. Choi, A. Dailey-Herbert, & J. Simmons Estes (Eds.), Emerging Tools and Applications in Education (pp. 1-25). IGI Global.

  • 37. Salinas, P. (2017). Augmented Reality: Opportunity for developing spatial visualization and learning calculus. In G. Kurubacak, & H. Altinpulluk (Eds.), Mobile Technologies and Augmented Reality in Open Education (pp. 54-74). Hershey, PA: IGI Global.

  • 38. Sullivan, P., Mousley, J, & R. Zevenbergen (2004). Describing Elements of Mathematics Lessons that Accommodate Diversity in Student Background. Proceedings of International Group for the Psychology of Mathematics Education, 28th, Bergen, Norway, July 14-18, 2004. Vol. 4, 257-264. Retrieved from

  • 39. United Nations Technology Innovations Lab (UNTIL) (Ed.) (2019). Inclusion and Diversity. Tech it or leave IT.

  • 40. Wu, H., Lee, S.W., Chang, H., & Liang, J. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41-49. doi:10.1016/j.compedu.2012.10.024

  • 41. Yuen, S. C. Y., Yaoyuneyong, G., & Johnson, E. (2011). Augmented reality: An overview and five directions for AR in education. Journal of Educational Technology Development and Exchange (JETDE), 4(1), 119-140.

  • 42. Zhou, F., Duh, H.-L., & Billinghurst, M. (2008). Trends in augmented reality traching, interaction and display: A review of ten years in ISMAR. Proceedings of the Mixed and Augmented Reality, ISMAR 7th IEEE/ACM International Symposium, 193-202. Cambridge: IEEE.


Journal + Issues