Major Advances and Challenges in Heterogeneous Catalysis for Environmental Applications: A Review

Open access

Abstract

Heterogeneous catalysis is one of the fastest developing branches of chemistry. Moreover, it is strongly connected to popular environment-related applications. Owing to the very fast changes in this field, for example, numerous discoveries in nanoscience and nanotechnologies, it is believed that an update of the literature on heterogeneous catalysis could be beneficial. This review not only covers the new developments of heterogeneous catalysis in environmental sciences but also touches its historical aspects. A short introduction to the mechanism of heterogeneous catalysis with a small section on advances in this field has also been elaborated. In the first part, recent innovations in the field of catalytic air, water, wastewater and soil treatment are presented, whereas in the second part, innovations in the use of heterogeneous catalysis for obtaining sustainable energy and chemicals are discussed. Catalytic processes are ubiquitous in all branches of chemistry and there are still many unsolved issues concerning them.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Polshettiwar V Varma RS. Green chemistry by nano-catalysis. Green Chem. 2010;12:743-754. DOI: 10.1039/b921171c.

  • [2] Crutzen PJ Wacławek S. Atmospheric chemistry and climate in the anthropocene. Chem Didact Ecol Metrol. 2014;19:9-28. DOI: 10.1515/cdem-2014-0001.

  • [3] Anastas PT Warner JC. Green Chemistry: Theory and Practice. New York: Oxford University Press; 1998. DOI: 10.1159/000143289.

  • [4] De Jong KP. Synthesis of Solid Catalysts. Weinheim Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2009. DOI: 10.1002/9783527626854.

  • [5] Schwartz TJ O’Neill BJ Shanks BH Dumesic JA. Bridging the chemical and biological catalysis gap: challenges and outlooks for producing sustainable chemicals. ACS Catal. 2014;4:2060-2069. DOI: 10.1021/cs500364y.

  • [6] Nørskov JK Studt F Abild-Pedersen F Bligaard T. Fundamental Concepts in Heterogeneous Catalysis. Hoboken NJ USA: John Wiley & Sons Inc; 2014. DOI: 10.1002/9781118892114.

  • [7] Loures CCA Amaral MS Da Rós PCM Zorn SMFE de Castro HF Silva MB. Simultaneous esterification and transesterification of microbial oil from Chlorella minutissima by acid catalysis route: A comparison between homogeneous and heterogeneous catalysts. Fuel. 2018;211:261-268. DOI: 10.1016/j.fuel.2017.09.073.

  • [8] Kuhn P Pale P Sommer J Louis B. Probing Cu-USY zeolite reactivity: Design of a green catalyst for the synthesis of diynes. J Phys Chem C. 2009;113:2903-2910. DOI: 10.1021/jp809772n.

  • [9] Bora SJ Paul R Nandi M Bhattacharyya PK. Two-fold interpenetrating BTC based cobaltous coordination polymer: A promising catalyst for solvent free oxidation of 1-hexene. J Solid State Chem. 2017;256:38-44. DOI: 10.1016/j.jssc.2017.08.034.

  • [10] Jin X Koizumi Y Yamaguchi K Nozaki K Mizuno N. Selective synthesis of primary anilines from cyclohexanone oximes by the concerted catalysis of a Mg-Al layered double hydroxide supported Pd catalyst. J Am Chem Soc. 2017;139:13821-13829. DOI: 10.1021/jacs.7b07347.

  • [11] Sarkar B Goyal R Sivakumar Konathala LN Pendem C Sasaki T Bal R. MoO3 nanoclusters decorated on TiO2 nanorods for oxidative dehydrogenation of ethane to ethylene. Appl Catal B Environ. 2017;217:637-649. DOI: 10.1016/j.apcatb.2017.06.037.

  • [12] Chiurchiù E Gabrielli S Ballini R Palmieri A. A new low impact and efficient synthesis of ω-nitro esters under solid heterogeneous catalysis. Green Chem. 2017;19:4956-4960. DOI: 10.1039/C7GC02241G.

  • [13] Wacławek S Lutze HV Grübel K Padil VVT Černík M Dionysiou DD. Chemistry of persulfates in water and wastewater treatment: A review. Chem Eng J. 2017;330:44-62. DOI: 10.1016/j.cej.2017.07.132.

  • [14] Ertl G Knzinger H Weitkamp J editors. Handbook of Heterogeneous Catalysis. Weinheim Germany: Wiley-VCH Verlag GmbH; 1997. DOI: 10.1002/9783527619474.

  • [15] Kalz KF Kraehnert R Dvoyashkin M Dittmeyer R Gläser R Krewer U et al. Future challenges in heterogeneous catalysis: Understanding catalysts under dynamic reaction conditions. Chem Cat Chem. 2017;9:17-29. DOI: 10.1002/cctc.201600996.

  • [16] Ostwald W. Definition der Katalyse. Zeit Phys Chemie. 1894;15:705-706.

  • [17] Friedrich B. Fritz Haber: Chemist Nobel Laureate German Jew. By Dietrich Stoltzenberg. Angew Chemie Int Ed. 2005;44:3957-3961. DOI: 10.1002/anie.200485206.

  • [18] Charles D. Master mind: the rise and fall of Fritz Haber the Nobel laureate who launched the age of chemical warfare. Ecco; 2005. ISBN: 9780060562724.

  • [19] Appl M. Ammonia: Principles and Industrial Practice. Weinheim: Wiley-VCH; 1999. DOI: 10.1002/9783527613885.ch01.

  • [20] Smil V. Nitrogen cycle and world food production. World Agric. 2011;2:9-13.

  • [21] International Historical Statistics. London: Palgrave Macmillan UK; 2013. DOI: 10.1057/9781137305688.

  • [22] Ertl G Prigge D Schloegl R Weiss M. Surface characterization of ammonia synthesis catalysts. J Catal. 1983;79:359-377. DOI: 10.1016/0021-9517(83)90330-5.

  • [23] Stone FS. Research perspectives during 40 years of the Journal of Catalysis. J Catal. 2003;216:2-11. DOI: 10.1016/S0021-9517(02)00126-4.

  • [24] Xin Q Lin L. Progress in catalysis in China during 1982-2012: Theory and technological innovations. Chinese J Catal. 2013;34:401-435. DOI: 10.1016/S1872-2067(11)60463-4.

  • [25] Editorial: “Plenty of room” revisited. Nat Nanotechnol. 2009;4:781. DOI: 10.1038/nnano.2009.356.

  • [26] Zhang Z Xu B Wang X. Engineering nanointerfaces for nanocatalysis. Chem Soc Rev. 2014;43:7870-7886. DOI: 10.1039/C3CS60389J.

  • [27] Liu Y Zhao G Wang D Li Y. Heterogeneous catalysis for green chemistry based on nanocrystals. Natl Sci Rev. 2015;2:150-166. DOI: 10.1093/nsr/nwv014.

  • [28] Yang F Deng D Pan X Fu Q Bao X. Understanding nano effects in catalysis. Natl Sci Rev. 2015;2:183-201. DOI: 10.1093/nsr/nwv024.

  • [29] Yan H Lin Y Wu H Zhang W Sun Z Cheng H et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat Commun. 2017;8:1070. DOI: 10.1038/s41467-017-01259-z.

  • [30] Pieters G Prins LJ. Catalytic self-assembled monolayers on gold nanoparticles. New J Chem. 2012;36:1931-1939. DOI: 10.1039/c2nj40424a.

  • [31] Santra S Hota PK Bhattacharyya R Bera P Ghosh P Mandal SK. Palladium nanoparticles on graphite oxide: A recyclable catalyst for the synthesis of biaryl cores. ACS Catal. 2013;3:2776-2789. DOI: 10.1021/cs400468h.

  • [32] Chu M Liu X Sui Y Luo J Meng C. Unique reactivity of transition metal atoms embedded in graphene to CO NO O2 and O adsorption: A first-principles investigation. Molecules. 2015;20:19540-19553. DOI: 10.3390/molecules201019540.

  • [33] Liu X Meng C Han Y. understanding the enhanced catalytic performance of ultrafine transition metal nanoparticles-graphene composites. J Mol Eng Mater. 2015;3:1540002-1540012. DOI: 10.1142/S225123731540002X.

  • [34] Liu S Hui KS Hui KN. Review of the Green Synthesis of Metal/Graphene Composites for Energy Conversion Sensor Environmental and Bioelectronic Applications. Adv Bioelectron Mater. Hoboken NJ USA: John Wiley Sons Inc.; 2015; 427-465. DOI: 10.1002/9781118998861.ch13.

  • [35] Cheng Y Fan Y Pei Y Qiao M. Graphene-supported metal/metal oxide nanohybrids: synthesis and applications in heterogeneous catalysis. Catal Sci Technol. 2015;5:3903-3916. DOI: 10.1039/C5CY00630A.

  • [36] Mahmoodinia M Åstrand P-O Chen D. Tuning the electronic properties of single-atom pt catalysts by functionalization of the carbon support material. J Phys Chem C. 2017;121:20802-20812. DOI: 10.1021/acs.jpcc.7b05894.

  • [37] Fernández-Ibáñez P Polo-López MI Malato S Wadhwa S Hamilton JWJ Dunlop PSM et al. Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem Eng J. 2015;261:36-44. DOI: 10.1016/j.cej.2014.06.089.

  • [38] Chen Y Huang Z Ma Z Chen J Tang X. Fabrication characterization and stability of supported single-atom catalysts. Catal Sci Technol. 2017;7:4250-4258. DOI: 10.1039/C7CY00723J.

  • [39] Baiker A. Heterogeneous catalysis - An interdisciplinary approach. Chimia (Aarau). 2001;55:796-800.

  • [40] Goodman DW. Model catalysts: From imagining to imaging a working surface. J Catal. 2003;216:213-222. DOI: 10.1016/S0021-9517(02)00112-4.

  • [41] Newton MA. Dynamic adsorbate/reaction induced structural change of supported metal nanoparticles: heterogeneous catalysis and beyond. Chem Soc Rev. 2008;37:2644-2657. DOI: 10.1039/b707746g.

  • [42] Fechete I Wang Y Védrine JC. The past present and future of heterogeneous catalysis. Catal Today. 2012;189:2-27. DOI: 10.1016/j.cattod.2012.04.003.

  • [43] Cao Y Mao S Li M Chen Y Wang Y. Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping. ACS Catal. 2017:8090-8112. DOI: 10.1021/acscatal.7b02335.

  • [44] Liu X Dai L. Carbon-based metal-free catalysts. Nat Rev Mater. 2016;1:16064. DOI: 10.1038/natrevmats.2016.64.

  • [45] Anastas PT Kirchhoff MM Williamson TC. Catalysis as a foundational pillar of green chemistry. Appl Catal A Gen. 2001;221:3-13. DOI: 10.1016/S0926-860X(01)00793-1.

  • [46] Centi G Ciambelli P Perathoner S Russo P. Environmental catalysis: Trends and outlook. Catal Today. 2002;75:3-15. DOI: 10.1016/S0920-5861(02)00037-8.

  • [47] Pirkanniemi K Sillanpää M. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere. 2002;48:1047-1060. DOI: 10.1016/S0045-6535(02)00168-6.

  • [48] Rani A Jain S Sharma SK. Nano-catalyst: A second generation tool for green chemistry. Green Chem. 2012:357-378. DOI: 10.1002/9781118287705.ch12.

  • [49] Chaturvedi S Dave PN Shah NK. Applications of nano-catalyst in new era. J Saudi Chem Soc. 2012;16:307-325. DOI: 10.1016/j.jscs.2011.01.015.

  • [50] Beller M. A personal view on homogeneous catalysis and its perspectives for the use of renewables. Eur J Lipid Sci Technol. 2008;110:789-796. DOI: 10.1002/ejlt.200800062.

  • [51] Descorme C Gallezot P Geantet C George C. Heterogeneous catalysis: A key tool toward sustainability. Chem Cat Chem. 2012;4:1897-906. DOI: 10.1002/cctc.201200483.

  • [52] Murzin D Salmi T. Catalytic Kinetics: Chemistry and Engineering. Elsevie; 2016;752. ISBN: 9780444637536.

  • [53] Keil FJ. Complexities in modeling of heterogeneous catalytic reactions. Comput Math Appl. 2013;65:1674-1697. DOI: 10.1016/j.camwa.2012.11.023.

  • [54] Elizarov AI Sukachov AV. New method for visualizing heterogeneous reactions. Vacuum. 1999;54:233-237. DOI: 10.1016/S0042-207X(98)00470-9.

  • [55] Piumetti M Freyria FS Bonelli B. Catalytically active sites and their complexity: A micro-review. Chim Oggi/Chemistry Today. 2013;31:55-58. DOI: 10.1002/chin.201411235.

  • [56] Samokhvalov A Tatarchuk BJ. Review of experimental characterization of active sites and determination of molecular mechanisms of adsorption desorption and regeneration of the deep and ultradeep desulfurization sorbents for liquid fuels. Catal Rev. 2010;52:381-410. DOI: 10.1080/01614940.2010.498749.

  • [57] Zaera F. Regio- stereo- and enantioselectivity in hydrocarbon conversion on metal surfaces. Acc Chem Res. 2009;42:1152-1160. DOI: 10.1021/ar900049m.

  • [58] Zhou W Soultanidis N Xu H Wong MS Neurock M Kiely CJ et al. Nature of catalytically active sites in the supported WO3/ZrO2 solid acid system: A current perspective. ACS Catal. 2017;7:2181-2198. DOI: 10.1021/acscatal.6b03697.

  • [59] Ertl G. Surface science and catalysis - Studies on the mechanism of ammonia synthesis: The P. H. Emmett Award Address. Catal Rev. 1980;21:201-223. DOI: 10.1080/03602458008067533.

  • [60] Kordas K Rautio A-R Lorite GS Mohl M Mäki-Arvela P Mikkola J-P et al. On the interaction of metal nanoparticles with supports. Top Catal. 2015;58:1127-1135. DOI: 10.1007/s11244-015-0481-y.

  • [61] Behafarid F Roldan Cuenya B. Towards the understanding of sintering phenomena at the nanoscale: Geometric and environmental effects. Top Catal. 2013;56:1542-1559. DOI: 10.1007/s11244-013-0149-4.

  • [62] Morgan K Goguet A Hardacre C. Metal redispersion strategies for recycling of supported metal catalysts: A perspective. ACS Catal. 2015;5:3430-3445. DOI: 10.1021/acscatal.5b00535.

  • [63] Molnár Á Papp A. Catalyst recycling - A survey of recent progress and current status. Coord Chem Rev. 2017;349:1-65. DOI: 10.1016/j.ccr.2017.08.011.

  • [64] Lundgren E Zhang C Merte LR Shipilin M Blomberg S Hejral U et al. Novel in situ techniques for studies of model catalysts. Acc Chem Res. 2017;50:2326-2333. DOI: 10.1021/acs.accounts.7b00281.

  • [65] Liu JJ. Advanced electron microscopy of metal-support interactions in supported metal catalysts. Chem Cat Chem. 2011;3:934-948. DOI: 10.1002/cctc.201100090.

  • [66] Tao F Tang D Salmeron M Somorjai GA. A new scanning tunneling microscope reactor used for high-pressure and high-temperature catalysis studies. Rev Sci Instrum. 2008;79:84101. DOI: 10.1063/1.2960569.

  • [67] Prieto MJ Schmidt T. LEEM and PEEM as probing tools to address questions in catalysis. Catal Lett. 2017;147:2487-2497. DOI: 10.1007/s10562-017-2162-x.

  • [68] Chenna S Banerjee R Crozier PA. Atomic-scale observation of the Ni activation process for partial oxidation of methane using in situ environmental TEM. Chem Cat Chem. 2011;3:1051-1059. DOI: 10.1002/cctc.201000238.

  • [69] Wang X Huang S-C Huang T-X Su H-S Zhong J-H Zeng Z-C et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem Soc Rev. 2017;46:4020-4041. DOI: 10.1039/C7CS00206H.

  • [70] Andanson J-M Baiker A. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy. Chem Soc Rev. 2010;39:4571-4584. DOI: 10.1039/b919544k.

  • [71] Zaera F. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem Soc Rev. 2014;43:7624-7663. DOI: 10.1039/C3CS60374A.

  • [72] Holade Y Servat K Tingry S Napporn TW Remita H Cornu D et al. Advances in electrocatalysis for energy conversion and synthesis of organic molecules. Chem Phys Chem. 2017;18:2573-605. DOI: 10.1002/cphc.201700447.

  • [73] Yamashita H Li H. Nanostructured photocatalysts: advanced functional materials. Cham: Springer; 2016. ISBN: 978-3-319-26079-2

  • [74] García A Fernandez-Blanco C Herance JR Albero J García H. Graphenes as additives in photoelectrocatalysis. J Mater Chem A. 2017;5:16522-16536. DOI: 10.1039/C7TA04045H.

  • [75] Augugliaro V Camera-Roda G Loddo V Palmisano G Palmisano L Soria J et al. Heterogeneous photocatalysis and photoelectrocatalysis: From unselective abatement of noxious species to selective production of high-value chemicals. J Phys Chem Lett. 2015;6:1968-1981. DOI: 10.1021/acs.jpclett.5b00294.

  • [76] Gandhi HS Graham GW McCabe RW. Automotive exhaust catalysis. J. Catal. 2003;216:433-442. DOI: 10.1016/S0021-9517(02)00067-2.

  • [77] Zabłocka-Malicka M Szczepaniak W Zielińska A Rutkowski P. Steam gasification of oat with conversion of tars on clay catalyst and gas cleaning by condensation of steam. Ecol Chem Eng S. 2016;23:33-48. DOI: 10.1515/eces-2016-0002.

  • [78] Kurzman JA Misch LM Seshadri R. Chemistry of precious metal oxides relevant to heterogeneous catalysis. Dalt Trans. 2013;42:14653-14667. DOI: 10.1039/c3dt51818c.

  • [79] Gänzler AM Casapu M Vernoux P Loridant S Cadete Santos Aires FJ Epicier T et al. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew Chemie Int Ed. 2017;56:13078-13082. DOI: 10.1002/anie.201707842.

  • [80] Balaji Gopal C García-Melchor M Lee SC Shi Y Shavorskiy A Monti M et al. Equilibrium oxygen storage capacity of ultrathin CeO2-δ depends non-monotonically on large biaxial strain. Nat Commun. 2017;8:15360-15372. DOI: 10.1038/ncomms15360.

  • [81] Zhao Z-J Mu R Wang X Gong J. Fast prediction of CO binding energy via the local structure effect on PtCu alloy surfaces. Langmuir. 2017;33:8700-8706. DOI: 10.1021/acs.langmuir.7b00788.

  • [82] Caporali R Chansai S Burch R Delgado JJ Goguet A Hardacre C et al. Critical role of water in the direct oxidation of CO and hydrocarbons in Diesel exhaust after treatment catalysis. Appl Catal B Environ. 2014;147:764-769.

  • [83] Jeon B Kim A Lee YA Seo H Kim YK. A spontaneous change in the oxidation states of Pd/WO3 toward an active phase during catalytic cycles of CO oxidation. Surf Sci. 2017;665:43-50. DOI: 10.1016/j.susc.2017.08.007.

  • [84] Miao M-S Kurzman JA Mammen N Narasimhan S Seshadri R. Trends in the electronic structure of extended gold compounds: Implications for use of gold in heterogeneous catalysis. Inorg Chem. 2012;51:7569-7578. DOI: 10.1021/ic3002674.

  • [85] Amin MT Alazba AA Manzoor U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng. 2014;2014:1-24. DOI: 10.1155/2014/825910.

  • [86] Huang H Xu Y Feng Q Leung DYC. Low temperature catalytic oxidation of volatile organic compounds: A review. Catal Sci Technol. 2015;5:2649-2669. DOI: 10.1039/C4CY01733A.

  • [87] Piumetti M Bensaid S Fino D Russo N. Catalysis in Diesel engine NOx aftertreatment: a review. Catal Struct React. 2015;1:155-173. DOI: 10.1080/2055074X.2015.1105615.

  • [88] Shiotari A Hatta S Okuyama H Aruga T. Role of hydrogen bonding in the catalytic reduction of nitric oxide. Chem Sci. 2014;5:922-926. DOI: 10.1039/C3SC52334A.

  • [89] Shen Y Ge X Chen M. Catalytic oxidation of nitric oxide (NO) with carbonaceous materials. RSC Adv. 2016;6:8469-8482. DOI: 10.1039/C5RA24148K.

  • [90] Zouzelka R Rathousky J. Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Appl Catal B Environ. 2017;217:466-476. DOI: 10.1016/j.apcatb.2017.06.009.

  • [91] Martin M Leonid S Tomáš R Jan Š Jaroslav K Mariana K et al. Anatase TiO2 nanotube arrays and titania films on titanium mesh for photocatalytic NOX removal and water cleaning. Catal Today. 2017;287:59-64. DOI: 10.1016/j.cattod.2016.10.011.

  • [92] Sázavská T Šubrt J Jakubičková M Peterka F. Photocatalytic coatings - promising way to improve a quality of urban building surfaces. Chem Didact Ecol Metrol. 2015;20:113-122. DOI: 10.1515/cdem-2015-0012.

  • [93] Hu J Chen D Li N Xu Q Li H He J et al. In situ fabrication of Bi2O2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation. Appl Catal B Environ. 2017;217:224-231. DOI: 10.1016/j.apcatb.2017.05.088.

  • [94] Bahri M Haghighat F. Plasma-based indoor air cleaning technologies: The state of the art-review. CLEAN - Soil Air Water. 2014;42:1667-1680. DOI: 10.1002/clen.201300296.

  • [95] Lin M-W Jwo C-S Ho H-J Chen L-Y. Using box modeling to determine photodegradation coefficients describing the removal of gaseous formaldehyde from indoor air. Aerosol Air Qual Res. 2017;17:330-339. DOI: 10.4209/aaqr.2016.09.0397.

  • [96] Xuebao H Xiao-dong Z. Recent progress in the removal of volatile organic compounds by mesoporous silica materials and supported catalysts. Acta Phys - Chim Sin. 2015;31:1633-1646. DOI: 10.3866/PKU.WHXB201507281.

  • [97] Silva B Neves IC Tavares T. A sustained approach to environmental catalysis: Reutilization of chromium from wastewater. Crit Rev Environ Sci Technol. 2016;46:1622-1657. DOI: 10.1080/10643389.2016.1255505.

  • [98] Wang ZH Zhang X Zhu YQ Ling ZQ Zhou ZJ Zhou JH et al. Development of catalyst-sorbents for simultaneous removal of SO2 from flue gas by low temperature ozone oxidation. Ozone Sci Eng. 2012;34:204-212. DOI: 10.1080/01919512.2012.663726.

  • [99] Han GB Park NK Yoon SH Lee TJ Han GY. Direct reduction of sulfur dioxide to elemental sulfur with hydrogen over Sn-Zr-based catalysts. Ind Eng Chem Res. 2008;47:4658-4664. DOI: 10.1021/ie800058v.

  • [100] He J Wu P Wu Y Li H Jiang W Xun S et al. Taming interfacial oxygen vacancies of amphiphilic tungsten oxide for enhanced catalysis in oxidative desulfurization. ACS Sustain Chem Eng. 2017;5:8930-8938. DOI: 10.1021/acssuschemeng.7b01741.

  • [101] Saleh TA. Nanotechnology in Oil and Gas Industries. Cham: Springer Int Publishing; 2018. DOI: 10.1007/978-3-319-60630-9.

  • [102] Pelaez M Nolan NT Pillai SC Seery MK Falaras P Kontos AG et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331-349. DOI: 10.1016/j.apcatb.2012.05.036.

  • [103] Fujishima A Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37-38. DOI: 10.1038/238037a0.

  • [104] Pellegrino F Pellutiè L Sordello F Minero C Ortel E Hodoroaba VD et al. Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Appl Catal B Environ. 2017;216:80-87. DOI: 10.1016/j.apcatb.2017.05.046.

  • [105] Guo X Zhang G Cui H Wei N Song X Li J et al. Porous TiB2-TiC/TiO2 heterostructures: Synthesis and enhanced photocatalytic properties from nanosheets to sweetened rolls. Appl Catal B Environ. 2017;217:12-20. DOI: 10.1016/j.apcatb.2017.05.079.

  • [106] Najafi M Kermanpur A Rahimipour MR Najafizadeh A. Effect of TiO2 morphology on structure of TiO2-graphene oxide nanocomposite synthesized via a one-step hydrothermal method. J Alloys Compd. 2017;722:272-277. DOI: 10.1016/j.jallcom.2017.06.001.

  • [107] Dong W Yao Y Li L Sun Y Hua W Zhuang G et al. Three-dimensional interconnected mesoporous anatase TiO2 exhibiting unique photocatalytic performances. Appl Catal B Environ. 2017;217:293-302. DOI: 10.1016/j.apcatb.2017.05.083.

  • [108] Kudlek E Silvestri D Wacławek S Padil VVT Stuchlík M Voleský L et al. TiO2 immobilised on biopolymer nanofibers for the removal of bisphenol A and diclofenac from water. Ecol Chem Eng S. 2017;24:417-429. DOI: 10.1515/eces-2017-0028.

  • [109] Leong S Razmjou A Wang K Hapgood K Zhang X Wang H. TiO2 based photocatalytic membranes: A review. J Memb Sci. 2014;472:167-184. DOI: 10.1016/j.memsci.2014.08.016.

  • [110] Wang W Fang J Shao S Lai M Lu C. Compact and uniform TiO2 @g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl Catal B Environ. 2017;217:57-64. DOI: 10.1016/j.apcatb.2017.05.037.

  • [111] Wang J Yang Z Gao X Yao W Wei W Chen X et al. Core-shell g-C3N4@ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities. Appl Catal B Environ. 2017;217:169-180. DOI: 10.1016/j.apcatb.2017.05.034.

  • [112] Zhou X Wu J Zhang JJ He P Ren J Zhang JJ et al. The effect of surface heterojunction between (001) and (101) facets on photocatalytic performance of anatase TiO2. Mater Lett. 2017;205:173-137.

  • [113] Tugaoen HON Garcia-Segura S Hristovski K Westerhoff P. Challenges in photocatalytic reduction of nitrate as a water treatment technology. Sci Total Environ. 2017;599-600:1524-1551. DOI: 10.1016/j.scitotenv.2017.04.238.

  • [114] Molinari A Sarti E Marchetti N Pasti L. Degradation of emerging concern contaminants in water by heterogeneous photocatalysis with Na4W10O32. Appl Catal B Environ. 2017;203:9-17. DOI: 10.1016/j.apcatb.2016.09.031.

  • [115] Wang WL Meng Q Weng X Wu Z. Rapid syntheses of ultrafine LaMnO3 nano-crystallites with superior activity for catalytic oxidation of toluene. Catal Commun. 2016;84:167-170. DOI: 10.1016/j.catcom.2016.06.030.

  • [116] Lin F Shao B Li Z Zhang J Wang H Zhang S et al. Visible light photocatalysis over solid acid: Enhanced by gold plasmonic effect. Appl Catal B Environ. 2017;218:480-487. DOI: 10.1016/j.apcatb.2017.06.076.

  • [117] Ho LEB Becerra D Angulo V Salazar L. Biodegradability of agro-industrial wastewater photo treatment by heterogeneous catalysis. Afinidad. 2011;554:296-300.

  • [118] Houas A Lachheb H Ksibi M Elaloui E Guillard C Herrmann JM. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ. 2001;31:145-157. DOI: 10.1016/S0926-3373(00)00276-9.

  • [119] Kale MJ Avanesian T Christopher P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014;4:116-128. DOI: 10.1021/cs400993w.

  • [120] Tanaka A Hashimoto K Kominami H. A very simple method for the preparation of Au/TiO2 plasmonic photocatalysts working under irradiation of visible light in the range of 600-700 nm. Chem Commun. 2017;53:4759-62. DOI: 10.1039/C7CC01444A.

  • [121] Pincella F Isozaki K Miki K. A visible light-driven plasmonic photocatalyst. Light Sci Appl. 2014;3:e133. DOI: 10.1038/lsa.2014.14.

  • [122] Luo B Xu D Li D Wu G Wu M Shi W et al. Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. ACS Appl Mater Interfaces. 2015;7:17061-17069. DOI: 10.1021/acsami.5b03535.

  • [123] Mondal S De Anda Reyes ME Pal U. Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light. RSC Adv. 2017;7:8633-8645. DOI: 10.1039/C6RA28640B.

  • [124] Fan R Wang L Chen Y Zheng G Li L Li Z et al. Tailored Au@TiO2 nanostructures for the plasmonic effect in planar perovskite solar cells. J Mater Chem A. 2017;5:12034-12042. DOI: 10.1039/C7TA02937C.

  • [125] Zhu Y Fan L Yang B Du J. Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS Nano. 2014;8:5022-5031. DOI: 10.1021/nn5010974.

  • [126] Barakat T Rooke JC Genty E Cousin R Siffert S Su B-L. Gold catalysts in environmental remediation and water-gas shift technologies. Energy Environ Sci. 2013;6:371-391. DOI: 10.1039/C2EE22859A.

  • [127] Kästner C Thünemann AF. Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir. 2016;32:7383-7391. DOI: 10.1021/acs.langmuir.6b01477.

  • [128] Li X Zheng W Chen B Wang L He G. Rapidly constructing multiple AuPt nanoalloy yolk@shell hollow particles in ordered mesoporous silica microspheres for highly efficient catalysis. ACS Sustain Chem Eng. 2016;4:2780-2788. DOI: 10.1021/acssuschemeng.6b00260.

  • [129] Anjum M Miandad R Waqas M Gehany F Barakat MA. Remediation of wastewater using various nano-materials. Arab J Chem. 2016. DOI: 10.1016/j.arabjc.2016.10.004.

  • [130] Siegrist RL Crimi M Simpkin TJ. In Situ Chemical Oxidation for Groundwater Remediation. Chapter 2: Fundamentals of ISCO using hydrogen peroxide. 2011. DOI: 10.1007/978-1-4419-7826-4.

  • [131] Govindan K Raja M Noel M James EJ. Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate peroxodisulfate and hydrogen peroxide. J Hazard Mater. 2014;272:42-51. DOI: 10.1016/j.jhazmat.2014.02.036.

  • [132] Shah NS He X Khan HM Khan JA O’Shea KE Boccelli DL et al. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: A comparative study. J Hazard Mater. 2013;263:584-592. DOI: 10.1016/j.jhazmat.2013.10.019.

  • [133] Prucek R Hermanek M Zbořil R. An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation-A competition between homogeneous and heterogeneous catalysis. Appl Catal A Gen. 2009;366:325-332. DOI: 10.1016/j.apcata.2009.07.019.

  • [134] Franzle S Silbernagel H Uchlier L Liepelt G. Environmental heterogeneous catalysis and water purification by activated interfaces: a survey of different ways of surface activation and demonstration of a novel simple and efficient procedure. Ecol Chem Eng S. 2010;17:25-36.

  • [135] Fu F Dionysiou DD Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater. 2014;267:194-205. DOI: 10.1016/j.jhazmat.2013.12.062.

  • [136] Wacławek S Nosek J Cádrová L Antoš V Černík M. Use of various zero valent irons for degradation of chlorinated ethenes and ethanes. Ecol Chem Eng S. 2015;22:577-587. DOI: 10.1515/eces-2015-0034.

  • [137] Hrabák P Homolková M Wacławek S Černík M. Chemical degradation of PCDD/F in contaminated sediment. Ecol Chem Eng S. 2016;23:473-482. DOI: 10.1515/eces-2016-0034.

  • [138] Wang Y Ao Z Sun H Duan X Wang S. Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations. Appl Catal B Environ. 2016;198:295-302. DOI: 10.1016/j.apcatb.2016.05.075.

  • [139] Wacławek S Antoš V Hrabák P Černík M. Remediation of hexachlorocyclohexanes by cobalt-mediated activation of peroxymonosulfate. Desalin Water Treat. 2015:1-6. DOI: 10.1080/19443994.2015.1119757.

  • [140] Wacławek S Grübel K Černík M. The impact of peroxydisulphate and peroxymonosulphate on disintegration and settleability of activated sludge. Environ Technol (United Kingdom). 2016;37:1296-1304. DOI: 10.1080/09593330.2015.1112434.

  • [141] Wacławek S Grübel K Dennis P Padil VTP Černík M. A novel approach for simultaneous improvement of dewaterability post-digestion liquor properties and toluene removal from anaerobically digested sludge. Chem Eng J. 2016;291:192-198. DOI: 10.1016/j.cej.2016.01.103.

  • [142] Matzek LW Carter KE. Activated persulfate for organic chemical degradation: A review. Chemosphere. 2016;151:178-188. DOI: 10.1016/j.chemosphere.2016.02.055.

  • [143] Lee HHJ Lee HHJ Jeong J Lee J Park NB Lee C. Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. Chem Eng J. 2015;266:28-33. DOI: 10.1016/j.cej.2014.12.065.

  • [144] Duan X Sun H Kang J Wang Y Indrawirawan S Wang S. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. ACS Catal. 2015;5:4629-4636. DOI: 10.1021/acscatal.5b00774.

  • [145] Chen H Carroll KC. Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene. Environ Pollut. 2016;215:96-102. DOI: 10.1016/j.envpol.2016.04.088.

  • [146] Lee H Lee C Kim JH. Response to comment on “activation of persulfate by graphitized nanodiamonds for removal of organic compounds.” Environ Sci Technol. 2017;51:5353-5354. DOI: 10.1021/acs.est.7b01642.

  • [147] Ahmad M Teel AL Watts RJ. Persulfate activation by subsurface minerals. J Contam Hydrol. 2010;115:34-45. DOI: 10.1016/j.jconhyd.2010.04.002.

  • [148] Elliott DW Zhang W. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol. 2001;35:4922-4926. DOI: 10.1021/es0108584.

  • [149] Elliott DW Lien H-L Zhang W-X. Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng. 2009;135:317-324. DOI: 10.1061/(ASCE)0733-9372(2009)135:5(317).

  • [150] Mosaferi M Nemati S Khataee AR Nasseri S Hashemi A. Removal of arsenic (III V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. J Environ Heal Sci Eng. 2014;12:74-85. DOI: 10.1186/2052-336X-12-74.

  • [151] Thekkae Padil VV Filip J Suresh KI Wacławek S Černík M. Electrospun membrane composed of poly [acrylonitrile-co-(methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water. RSC Adv. 2016;6:110288-110300. DOI: 10.1039/C6RA24036D.

  • [152] Zhu H Jia Y Wu X Wang H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater. 2009;172:1591-1596. DOI: 10.1016/j.jhazmat.2009.08.031.

  • [153] Padil VVT Wacławek S Senan C Kupčík J Pešková K Černík M et al. Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: characterization and applications for the removal of chromium and volatile organic pollutants from water. RSC Adv. 2017;7:13997-4009. DOI: 10.1039/C7RA00464H.

  • [154] Krol MM Oleniuk AJ Kocur CM Sleep BE Bennett P Xiong Z et al. A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environ Sci Technol. 2013;47:7332-7340. DOI: 10.1021/es3041412.

  • [155] Němeček J Pokorný P Lhotský O Knytl V Najmanová P Steinová J et al. Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Sci Total Environ. 2016;563:822-834. DOI: 10.1016/j.scitotenv.2016.01.019.

  • [156] Centi G van Santen RA. Catalysis for Renewables: From Feedstock to Energy Production. Weinheim: Wiley-VCH Verlag GmbH Co. KGaA; 2007. DOI: 10.1002/9783527621118.

  • [157] Hisatomi T Kubota J Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev. 2014;43:7520-7535. DOI: 10.1039/C3CS60378D.

  • [158] Wang T Luo Z Li C Gong J. Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem Soc Rev. 2014;43:7469-7484. DOI: 10.1039/C3CS60370A.

  • [159] Pfeffer MG Schäfer B Smolentsev G Uhlig J Nazarenko E Guthmuller J et al. Palladium versus platinum: The metal in the catalytic center of a molecular photocatalyst determines the mechanism of the hydrogen production with visible light. Angew Chemie Int Ed. 2015;54:5044-5048. DOI: 10.1002/anie.201409438.

  • [160] Li YH Zheng LR Yang HG. A novel strategy for tailoring copper oxide cluster with Pt-like activity for photocatalytic hydrogen evolution. Int J Hydrogen Energy. 2015;40:15454-15459. DOI: 10.1016/j.ijhydene.2015.09.090.

  • [161] Yu X Li W Li Z Liu J Hu P. Defect engineered Ta2O5 nanorod: One-pot synthesis visible-light driven hydrogen generation and mechanism. Appl Catal B Environ. 2017;217:48-56. DOI: 10.1016/j.apcatb.2017.05.024.

  • [162] Lei Y Yang C Hou J Wang F Min S Ma X et al. Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots. Appl Catal B Environ. 2017;216:59-69. DOI: 10.1016/j.apcatb.2017.05.063.

  • [163] Wang SL Li J Wang S Wu J Wong TI Foo ML et al. Two-dimensional C/TiO2 heterogeneous hybrid for noble-metal-free hydrogen evolution. ACS Catal. 2017;7:6892-6900. DOI: 10.1021/acscatal.7b02331.

  • [164] Kwak K Choi W Tang Q Kim M Lee Y Jiang D et al. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat Commun. 2017;8:14723-14731. DOI: 10.1038/ncomms14723.

  • [165] Passalacqua R Centi G Perathoner S Balantseva E Camino B Ferrari AM et al. Solar production of fuels from water and CO2: Perspectives and opportunities for a sustainable use of renewable energy. Oil Gas Sci Technol - Rev IFP Energies Nouv. 2015;70:791-902.

  • [166] Lu X Xie S Yang H Tong Y Ji H. Photoelectrochemical hydrogen production from biomass derivatives and water. Chem Soc Rev. 2014;43:7581-7593. DOI: 10.1039/C3CS60392J.

  • [167] Srifa A Okura K Okanishi T Muroyama H Matsui T Eguchi K. Hydrogen production by ammonia decomposition over Cs-modified Co3Mo3N catalysts. Appl Catal B Environ. 2017;218:1-8. DOI: 10.1016/j.apcatb.2017.06.034.

  • [168] Pastor-Pérez L Baibars F Le Sache E Arellano-García H Gu S Reina TR. CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts. J CO2 Util. 2017;21:423-428. DOI: 10.1016/J.JCOU.2017.08.009.

  • [169] Zhang Z Wang S-S Song R Cao T Luo L Chen X et al. The most active Cu facet for low-temperature water gas shift reaction. Nat Commun. 2017;8:488-498. DOI: 10.1038/s41467-017-00620-6.

  • [170] Sun K Kohyama M Tanaka S Takeda S. Reaction mechanism of the low-temperature water-gas shift reaction on Au/TiO2 catalysts. J Phys Chem C. 2017;121:12178-12187. DOI: 10.1021/acs.jpcc.7b02400.

  • [171] Zhu M Wachs IE. Iron-based catalysts for the high-temperature water-gas shift (HT-WGS) reaction: A review. ACS Catal. 2016;6:722-732. DOI: 10.1021/acscatal.5b02594.

  • [172] Yao S Zhang X Zhou W Gao R Xu W Ye Y et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science. 2017;357:389-393. DOI: 10.1126/science.aah4321.

  • [173] Sassmanova V Janouchova R Frantik J Machackova I Juchelkova D. Influence of catalysts on water-gas shift reaction and hydrogen recovery. IERI Procedia. 2014;8:164-149. DOI: 10.1016/j.ieri.2014.09.027.

  • [174] Wang H Blaylock DW Dam AH Liland SE Rout KR Zhu Y-A et al. Steam methane reforming on a Ni-based bimetallic catalyst: density functional theory and experimental studies of the catalytic consequence of surface alloying of Ni with Ag. Catal Sci Technol. 2017;7:1713-1725. DOI: 10.1039/C7CY00101K.

  • [175] Abbas SZ Dupont V Mahmud T. Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int J Hydrogen Energy. 2017;42:2889-2903. DOI: 10.1016/j.ijhydene.2016.11.093.

  • [176] Arevalo RL Aspera SM Sison Escaño MC Nakanishi H Kasai H. Ru-catalyzed steam methane reforming: Mechanistic study from first principles calculations. ACS Omega. 2017;2:1295-1301. DOI: 10.1021/acsomega.6b00462.

  • [177] Xu Y Lausche AC Wang S Khan TS Abild-Pedersen F Studt F et al. In silico search for novel methane steam reforming catalysts. New J Phys. 2013;15:125021. DOI: 10.1088/1367-2630/15/12/125021.

  • [178] Smith PJ Kondrat SA Chater PA Yeo BR Shaw GM Lu L et al. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chem Sci. 2017;8:2436-2447. DOI: 10.1039/C6SC04130B.

  • [179] Jadhav SG Vaidya PD Bhanage BM Joshi JB. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies. Chem Eng Res Des. 2014;92:2557-2567. DOI: 10.1016/j.cherd.2014.03.005.

  • [180] Porosoff MD Yang X Boscoboinik JA Chen JG. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chemie Int Ed. 2014;53:6705-6709. DOI: 10.1002/anie.201404109.

  • [181] García-Trenco A Regoutz A White ER Payne DJ Shaffer MSP Williams CK. PdIn intermetallic nanoparticles for the hydrogenation of CO2 to methanol. Appl Catal B Environ. 2018;220:9-18. DOI: 10.1016/j.apcatb.2017.07.069.

  • [182] Wu C Zhang P Zhang Z Zhang L Yang G Han B. Efficient hydrogenation of CO2 to methanol over supported subnanometer gold catalysts at low temperature. Chem Cat Chem. 2017;9:3691-3696. DOI: 10.1002/cctc.201700872.

  • [183] Sun K Cheng T Wu L Hu Y Zhou J Maclennan A et al. Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles. J Am Chem Soc. 2017;139:15608-15611. DOI: 10.1021/jacs.7b09251.

  • [184] Bahruji H Bowker M Hutchings G Dimitratos N Wells P Gibson E et al. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J Catal. 2016;343:133-146. DOI: 10.1016/j.jcat.2016.03.017.

  • [185] Wu P Yang B. Significance of surface formate coverage on the reaction kinetics of methanol synthesis from CO2 hydrogenation over Cu. ACS Catal. 2017;7:7187-7195. DOI: 10.1021/acscatal.7b01910.

  • [186] Truong QD Hoa HT Le TS. Rutile TiO2 nanocrystals with exposed {3 3 1} facets for enhanced photocatalytic CO2 reduction activity. J Colloid Interface Sci. 2017;504:223-229. DOI: 10.1016/j.jcis.2017.05.045.

  • [187] Aguirre ME Zhou R Eugene AJ Guzman MI Grela MA. Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. Appl Catal B Environ. 2017;217:485-493. DOI: 10.1016/j.apcatb.2017.05.058.

  • [188] Castellani B Gambelli AM Morini E Nastasi B Presciutti A Filipponi M et al. Experimental investigation on CO2 methanation process for solar energy storage compared to CO2-based methanol synthesis. Energies. 2017;10:855-867. DOI: 10.3390/en10070855.

  • [189] Li W Nie X Jiang X Zhang A Ding F Liu M et al. ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation. Appl Catal B Environ. 2018;220:397-408. DOI: 10.1016/j.apcatb.2017.08.048.

  • [190] Mutz B Belimov M Wang W Sprenger P Serrer M-A Wang D et al. Potential of an alumina-supported Ni3Fe catalyst in the methanation of CO2: Impact of alloy formation on activity and stability. ACS Catal. 2017;7:6802-6814. DOI: 10.1021/acscatal.7b01896.

  • [191] Veselovskaya JV Parunin PD Okunev AG. Catalytic process for methane production from atmospheric carbon dioxide utilizing renewable energy. Catal Today. 2017;298:117-123. DOI: 10.1016/j.cattod.2017.05.044.

  • [192] Liu C Wang H Karim AM Sun J Wang Y. Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev. 2014;43:7594-7623. DOI: 10.1039/C3CS60414D.

  • [193] Yamaguchi A Hiyoshi N Sato O Bando KK Shirai M. Gaseous fuel production from nonrecyclable paper wastes by using supported metal catalysts in high-temperature liquid water. Chem Sus Chem. 2010;3:737-741. DOI: 10.1002/cssc.201000082.

  • [194] Yan B Wu J Xie C He F Wei C. Supercritical water gasification with Ni/ZrO2 catalyst for hydrogen production from model wastewater of polyethylene glycol. J Supercrit Fluids. 2009;50:155-161. DOI: 10.1016/j.supflu.2009.04.015.

  • [195] Werle S Dudziak M. Evaluation of the possibility of the sewage sludge gasification gas use as a fuel. Ecol Chem Eng S. 2016;23:229-236. DOI: 10.1515/eces-2016-0015.

  • [196] Werle S Dudziak M. Influence of wastewater treatment and the method of sludge disposal on the gasification process. Ecol Chem Eng S. 2014;21:255-268. DOI: 10.2478/eces-2014-0020.

  • [197] Werle S. Sewage sludge-to-energy management in eastern europe: A polish perspective. Ecol Chem Eng S. 2015;22:459-469. DOI: 10.1515/eces-2015-0027.

  • [198] Ruddy DA Schaidle JA Ferrell III JR Wang J Moens L Hensley JE. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem. 2014;16:454-490. DOI: 10.1039/C3GC41354C.

  • [199] Agblevor FA Elliott DC Santosa DM Olarte M V. Burton SD Swita M et al. Red mud catalytic pyrolysis of pinyon juniper and single-stage hydrotreatment of oils. Energy Fuels. 2016;30:7947-7958. DOI: 10.1021/acs.energyfuels.6b00925.

  • [200] Taifan W Baltrusaitis J. CH4 conversion to value added products: Potential limitations and extensions of a single step heterogeneous catalysis. Appl Catal B Environ. 2016;198:525-547. DOI: 10.1016/j.apcatb.2016.05.081.

  • [201] Stroud T Smith TJ Le Saché E Santos JL Centeno MA Arellano-Garcia H et al. Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl Catal B Environ. 2018;224:125-135. DOI: 10.1016/j.apcatb.2017.10.047.

  • [202] Lee AF Bennett JA Manayil JC Wilson K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev. 2014;43:7887-7916. DOI: 10.1039/C4CS00189C.

  • [203] Chang F Zhou Q Pan H Liu X-F Zhang H Xue W et al. Solid mixed-metal-oxide catalysts for biodiesel production: A review. Energy Technol. 2014;2:865-873. DOI: 10.1002/ente.201402089.

  • [204] Singh D Ganesh A Mahajani S. Heterogeneous catalysis for biodiesel synthesis and valorization of glycerol. Clean Technol Environ Policy. 2015;17:1103-1110. DOI: 10.1007/s10098-014-0858-9.

  • [205] Wilson K Lee AF. Catalyst design for biorefining. Philos Trans A. Math Phys Eng Sci. 2016;374:20150081. DOI: 10.1098/rsta.2015.0081.

  • [206] Guo X Yan Y Zhang Y Tang Y. Heterogeneously catalytic transformation of biomass-derived sugars. Prog Chem. 2013;25:1915-1927. DOI: 10.7536/PC130152.

  • [207] Georgogianni KG Katsoulidis AK Pomonis PJ Manos G Kontominas MG. Transesterification of rapeseed oil for the production of biodiesel using homogeneous and heterogeneous catalysis. Fuel Process Technol. 2009;90:1016-1022. DOI: 10.1016/j.fuproc.2009.03.002.

  • [208] Gu M Xia Q Liu X Guo Y Wang Y. Synthesis of renewable lubricant alkanes from biomass-derived platform chemicals. Chem Sus Chem. 2017;10:4102-4108. DOI: 10.1002/cssc.201701200.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1156 703 40
PDF Downloads 706 488 14