Open Access

Major Advances and Challenges in Heterogeneous Catalysis for Environmental Applications: A Review


Cite

[1] Polshettiwar V, Varma RS. Green chemistry by nano-catalysis. Green Chem. 2010;12:743-754. DOI: 10.1039/b921171c.10.1039/b921171cOpen DOISearch in Google Scholar

[2] Crutzen PJ, Wacławek S. Atmospheric chemistry and climate in the anthropocene. Chem Didact Ecol Metrol. 2014;19:9-28. DOI: 10.1515/cdem-2014-0001.10.1515/cdem-2014-0001Open DOISearch in Google Scholar

[3] Anastas PT, Warner JC. Green Chemistry: Theory and Practice. New York: Oxford University Press; 1998. DOI: 10.1159/000143289.10.1159/0001432894981182Open DOISearch in Google Scholar

[4] De Jong KP. Synthesis of Solid Catalysts. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2009. DOI: 10.1002/9783527626854.10.1002/9783527626854Open DOISearch in Google Scholar

[5] Schwartz TJ, O’Neill BJ, Shanks BH, Dumesic JA. Bridging the chemical and biological catalysis gap: challenges and outlooks for producing sustainable chemicals. ACS Catal. 2014;4:2060-2069. DOI: 10.1021/cs500364y.10.1021/cs500364yOpen DOISearch in Google Scholar

[6] Nørskov JK, Studt F, Abild-Pedersen F, Bligaard T. Fundamental Concepts in Heterogeneous Catalysis. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2014. DOI: 10.1002/9781118892114.10.1002/9781118892114Open DOISearch in Google Scholar

[7] Loures CCA, Amaral MS, Da Rós PCM, Zorn SMFE, de Castro HF, Silva MB. Simultaneous esterification and transesterification of microbial oil from Chlorella minutissima by acid catalysis route: A comparison between homogeneous and heterogeneous catalysts. Fuel. 2018;211:261-268. DOI: 10.1016/j.fuel.2017.09.073.10.1016/j.fuel.2017.09.073Open DOISearch in Google Scholar

[8] Kuhn P, Pale P, Sommer J, Louis B. Probing Cu-USY zeolite reactivity: Design of a green catalyst for the synthesis of diynes. J Phys Chem C. 2009;113:2903-2910. DOI: 10.1021/jp809772n.10.1021/jp809772nSearch in Google Scholar

[9] Bora SJ, Paul R, Nandi M, Bhattacharyya PK. Two-fold interpenetrating BTC based cobaltous coordination polymer: A promising catalyst for solvent free oxidation of 1-hexene. J Solid State Chem. 2017;256:38-44. DOI: 10.1016/j.jssc.2017.08.034.10.1016/j.jssc.2017.08.034Open DOISearch in Google Scholar

[10] Jin X, Koizumi Y, Yamaguchi K, Nozaki K, Mizuno N. Selective synthesis of primary anilines from cyclohexanone oximes by the concerted catalysis of a Mg-Al layered double hydroxide supported Pd catalyst. J Am Chem Soc. 2017;139:13821-13829. DOI: 10.1021/jacs.7b07347.10.1021/jacs.7b0734728902495Search in Google Scholar

[11] Sarkar B, Goyal R, Sivakumar Konathala LN, Pendem C, Sasaki T, Bal R. MoO3 nanoclusters decorated on TiO2 nanorods for oxidative dehydrogenation of ethane to ethylene. Appl Catal B Environ. 2017;217:637-649. DOI: 10.1016/j.apcatb.2017.06.037.10.1016/j.apcatb.2017.06.037Open DOISearch in Google Scholar

[12] Chiurchiù E, Gabrielli S, Ballini R, Palmieri A. A new, low impact and efficient synthesis of ω-nitro esters under solid heterogeneous catalysis. Green Chem. 2017;19:4956-4960. DOI: 10.1039/C7GC02241G.10.1039/7GC02241Open DOISearch in Google Scholar

[13] Wacławek S, Lutze HV, Grübel K, Padil VVT, Černík M, Dionysiou DD. Chemistry of persulfates in water and wastewater treatment: A review. Chem Eng J. 2017;330:44-62. DOI: 10.1016/j.cej.2017.07.132.10.1016/j.cej.2017.07.132Open DOISearch in Google Scholar

[14] Ertl G, Knzinger H, Weitkamp J, editors. Handbook of Heterogeneous Catalysis. Weinheim, Germany: Wiley-VCH Verlag GmbH; 1997. DOI: 10.1002/9783527619474.10.1002/9783527619474Open DOISearch in Google Scholar

[15] Kalz KF, Kraehnert R, Dvoyashkin M, Dittmeyer R, Gläser R, Krewer U, et al. Future challenges in heterogeneous catalysis: Understanding catalysts under dynamic reaction conditions. Chem Cat Chem. 2017;9:17-29. DOI: 10.1002/cctc.201600996.10.1002/cctc.201600996Open DOISearch in Google Scholar

[16] Ostwald W. Definition der Katalyse. Zeit Phys Chemie. 1894;15:705-706.Search in Google Scholar

[17] Friedrich B. Fritz Haber: Chemist, Nobel Laureate, German, Jew. By Dietrich Stoltzenberg. Angew Chemie Int Ed. 2005;44:3957-3961. DOI: 10.1002/anie.200485206.10.1002/anie.200485206Open DOISearch in Google Scholar

[18] Charles D. Master mind: the rise and fall of Fritz Haber, the Nobel laureate who launched the age of chemical warfare. Ecco; 2005. ISBN: 9780060562724.Search in Google Scholar

[19] Appl M. Ammonia: Principles and Industrial Practice. Weinheim: Wiley-VCH; 1999. DOI: 10.1002/9783527613885.ch01.10.1002/9783527613885.ch01Open DOISearch in Google Scholar

[20] Smil V. Nitrogen cycle and world food production. World Agric. 2011;2:9-13.Search in Google Scholar

[21] International Historical Statistics. London: Palgrave Macmillan UK; 2013. DOI: 10.1057/9781137305688.10.1057/9781137305688Open DOISearch in Google Scholar

[22] Ertl G, Prigge D, Schloegl R, Weiss M. Surface characterization of ammonia synthesis catalysts. J Catal. 1983;79:359-377. DOI: 10.1016/0021-9517(83)90330-5.10.1016/0021-9517(83)90330-5Open DOISearch in Google Scholar

[23] Stone FS. Research perspectives during 40 years of the Journal of Catalysis. J Catal. 2003;216:2-11. DOI: 10.1016/S0021-9517(02)00126-4.10.1016/S0021-9517(02)00126-4Open DOISearch in Google Scholar

[24] Xin Q, Lin L. Progress in catalysis in China during 1982-2012: Theory and technological innovations. Chinese J Catal. 2013;34:401-435. DOI: 10.1016/S1872-2067(11)60463-4.10.1016/S1872-2067(11)60463-4Open DOISearch in Google Scholar

[25] Editorial: “Plenty of room” revisited. Nat Nanotechnol. 2009;4:781. DOI: 10.1038/nnano.2009.356.10.1038/nnano.2009.35619966817Open DOISearch in Google Scholar

[26] Zhang Z, Xu B, Wang X. Engineering nanointerfaces for nanocatalysis. Chem Soc Rev. 2014;43:7870-7886. DOI: 10.1039/C3CS60389J.10.1039/C3CS60389JOpen DOISearch in Google Scholar

[27] Liu Y, Zhao G, Wang D, Li Y. Heterogeneous catalysis for green chemistry based on nanocrystals. Natl Sci Rev. 2015;2:150-166. DOI: 10.1093/nsr/nwv014.10.1093/nsr/nwv014Open DOISearch in Google Scholar

[28] Yang F, Deng D, Pan X, Fu Q, Bao X. Understanding nano effects in catalysis. Natl Sci Rev. 2015;2:183-201. DOI: 10.1093/nsr/nwv024.10.1093/nsr/nwv024Open DOISearch in Google Scholar

[29] Yan H, Lin Y, Wu H, Zhang W, Sun Z, Cheng H, et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat Commun. 2017;8:1070. DOI: 10.1038/s41467-017-01259-z.10.1038/s41467-017-01259-z571516129057957Search in Google Scholar

[30] Pieters G, Prins LJ. Catalytic self-assembled monolayers on gold nanoparticles. New J Chem. 2012;36:1931-1939. DOI: 10.1039/c2nj40424a.10.1039/c2nj40424aOpen DOISearch in Google Scholar

[31] Santra S, Hota PK, Bhattacharyya R, Bera P, Ghosh P, Mandal SK. Palladium nanoparticles on graphite oxide: A recyclable catalyst for the synthesis of biaryl cores. ACS Catal. 2013;3:2776-2789. DOI: 10.1021/cs400468h.10.1021/cs400468hOpen DOISearch in Google Scholar

[32] Chu M, Liu X, Sui Y, Luo J, Meng C. Unique reactivity of transition metal atoms embedded in graphene to CO, NO, O2 and O adsorption: A first-principles investigation. Molecules. 2015;20:19540-19553. DOI: 10.3390/molecules201019540.10.3390/201019540Open DOISearch in Google Scholar

[33] Liu X, Meng C, Han Y. understanding the enhanced catalytic performance of ultrafine transition metal nanoparticles-graphene composites. J Mol Eng Mater. 2015;3:1540002-1540012. DOI: 10.1142/S225123731540002X.10.1142/S225123731540002XOpen DOISearch in Google Scholar

[34] Liu S, Hui KS, Hui KN. Review of the Green Synthesis of Metal/Graphene Composites for Energy Conversion, Sensor, Environmental, and Bioelectronic Applications. Adv Bioelectron Mater. Hoboken, NJ, USA: John Wiley Sons, Inc.; 2015; 427-465. DOI: 10.1002/9781118998861.ch13.10.1002/9781118998861.ch13Open DOISearch in Google Scholar

[35] Cheng Y, Fan Y, Pei Y, Qiao M. Graphene-supported metal/metal oxide nanohybrids: synthesis and applications in heterogeneous catalysis. Catal Sci Technol. 2015;5:3903-3916. DOI: 10.1039/C5CY00630A.10.1039/C5CY00630Open DOISearch in Google Scholar

[36] Mahmoodinia M, Åstrand P-O, Chen D. Tuning the electronic properties of single-atom pt catalysts by functionalization of the carbon support material. J Phys Chem C. 2017;121:20802-20812. DOI: 10.1021/acs.jpcc.7b05894.10.1021/acs.jpcc.7b05894Open DOISearch in Google Scholar

[37] Fernández-Ibáñez P, Polo-López MI, Malato S, Wadhwa S, Hamilton JWJ, Dunlop PSM, et al. Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem Eng J. 2015;261:36-44. DOI: 10.1016/j.cej.2014.06.089.10.1016/j.cej.2014.06.089Open DOISearch in Google Scholar

[38] Chen Y, Huang Z, Ma Z, Chen J, Tang X. Fabrication, characterization, and stability of supported single-atom catalysts. Catal Sci Technol. 2017;7:4250-4258. DOI: 10.1039/C7CY00723J.10.1039/C7CY00723JOpen DOISearch in Google Scholar

[39] Baiker A. Heterogeneous catalysis - An interdisciplinary approach. Chimia (Aarau). 2001;55:796-800.10.2533/chimia.2001.796Search in Google Scholar

[40] Goodman DW. Model catalysts: From imagining to imaging a working surface. J Catal. 2003;216:213-222. DOI: 10.1016/S0021-9517(02)00112-4.10.1016/S0021-9517(02)00112-4Open DOISearch in Google Scholar

[41] Newton MA. Dynamic adsorbate/reaction induced structural change of supported metal nanoparticles: heterogeneous catalysis and beyond. Chem Soc Rev. 2008;37:2644-2657. DOI: 10.1039/b707746g.10.1039/b707746g19020678Open DOISearch in Google Scholar

[42] Fechete I, Wang Y, Védrine JC. The past, present and future of heterogeneous catalysis. Catal Today. 2012;189:2-27. DOI: 10.1016/j.cattod.2012.04.003.10.1016/j.cattod.2012.04.003Open DOISearch in Google Scholar

[43] Cao Y, Mao S, Li M, Chen Y, Wang Y. Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping. ACS Catal. 2017:8090-8112. DOI: 10.1021/acscatal.7b02335.10.1021/acscatal.7b02335Open DOISearch in Google Scholar

[44] Liu X, Dai L. Carbon-based metal-free catalysts. Nat Rev Mater. 2016;1:16064. DOI: 10.1038/natrevmats.2016.64.10.1038/natrevmats.2016.64Open DOISearch in Google Scholar

[45] Anastas PT, Kirchhoff MM, Williamson TC. Catalysis as a foundational pillar of green chemistry. Appl Catal A Gen. 2001;221:3-13. DOI: 10.1016/S0926-860X(01)00793-1.10.1016/S0926-860X(01)00793-1Open DOISearch in Google Scholar

[46] Centi G, Ciambelli P, Perathoner S, Russo P. Environmental catalysis: Trends and outlook. Catal Today. 2002;75:3-15. DOI: 10.1016/S0920-5861(02)00037-8.10.1016/S0920-5861(02)00037-8Open DOISearch in Google Scholar

[47] Pirkanniemi K, Sillanpää M. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere. 2002;48:1047-1060. DOI: 10.1016/S0045-6535(02)00168-6.10.1016/S0045-6535(02)00168-6Open DOISearch in Google Scholar

[48] Rani A, Jain S, Sharma SK. Nano-catalyst: A second generation tool for green chemistry. Green Chem. 2012:357-378. DOI: 10.1002/9781118287705.ch12.10.1002/9781118287705.ch12Open DOISearch in Google Scholar

[49] Chaturvedi S, Dave PN, Shah NK. Applications of nano-catalyst in new era. J Saudi Chem Soc. 2012;16:307-325. DOI: 10.1016/j.jscs.2011.01.015.10.1016/j.jscs.2011.01.015Open DOISearch in Google Scholar

[50] Beller M. A personal view on homogeneous catalysis and its perspectives for the use of renewables. Eur J Lipid Sci Technol. 2008;110:789-796. DOI: 10.1002/ejlt.200800062.10.1002/ejlt.200800062Open DOISearch in Google Scholar

[51] Descorme C, Gallezot P, Geantet C, George C. Heterogeneous catalysis: A key tool toward sustainability. Chem Cat Chem. 2012;4:1897-906. DOI: 10.1002/cctc.201200483.10.1002/cctc.201200483Open DOISearch in Google Scholar

[52] Murzin D, Salmi T. Catalytic Kinetics: Chemistry and Engineering. Elsevie;, 2016;752. ISBN: 9780444637536.10.1016/B978-0-444-63753-6.00006-3Search in Google Scholar

[53] Keil FJ. Complexities in modeling of heterogeneous catalytic reactions. Comput Math Appl. 2013;65:1674-1697. DOI: 10.1016/j.camwa.2012.11.023.10.1016/j.camwa.2012.11.023Open DOISearch in Google Scholar

[54] Elizarov AI, Sukachov AV. New method for visualizing heterogeneous reactions. Vacuum. 1999;54:233-237. DOI: 10.1016/S0042-207X(98)00470-9.10.1016/S0042-207X(98)00470-9Open DOISearch in Google Scholar

[55] Piumetti M, Freyria FS, Bonelli B. Catalytically active sites and their complexity: A micro-review. Chim Oggi/Chemistry Today. 2013;31:55-58. DOI: 10.1002/chin.201411235.10.1002/chin.201411235Open DOISearch in Google Scholar

[56] Samokhvalov A, Tatarchuk BJ. Review of experimental characterization of active sites and determination of molecular mechanisms of adsorption, desorption and regeneration of the deep and ultradeep desulfurization sorbents for liquid fuels. Catal Rev. 2010;52:381-410. DOI: 10.1080/01614940.2010.498749.10.1080/01614940.2010.498749Open DOISearch in Google Scholar

[57] Zaera F. Regio-, stereo-, and enantioselectivity in hydrocarbon conversion on metal surfaces. Acc Chem Res. 2009;42:1152-1160. DOI: 10.1021/ar900049m.10.1021/ar900049m19469501Open DOISearch in Google Scholar

[58] Zhou W, Soultanidis N, Xu H, Wong MS, Neurock M, Kiely CJ, et al. Nature of catalytically active sites in the supported WO3/ZrO2 solid acid system: A current perspective. ACS Catal. 2017;7:2181-2198. DOI: 10.1021/acscatal.6b03697.10.1021/acscatal.6b03697Open DOISearch in Google Scholar

[59] Ertl G. Surface science and catalysis - Studies on the mechanism of ammonia synthesis: The P. H. Emmett Award Address. Catal Rev. 1980;21:201-223. DOI: 10.1080/03602458008067533.10.1080/03602458008067533Open DOISearch in Google Scholar

[60] Kordas K, Rautio A-R, Lorite GS, Mohl M, Mäki-Arvela P, Mikkola J-P, et al. On the interaction of metal nanoparticles with supports. Top Catal. 2015;58:1127-1135. DOI: 10.1007/s11244-015-0481-y.10.1007/s11244-015-0481-yOpen DOISearch in Google Scholar

[61] Behafarid F, Roldan Cuenya B. Towards the understanding of sintering phenomena at the nanoscale: Geometric and environmental effects. Top Catal. 2013;56:1542-1559. DOI: 10.1007/s11244-013-0149-4.10.1007/s11244-013-0149-4Open DOISearch in Google Scholar

[62] Morgan K, Goguet A, Hardacre C. Metal redispersion strategies for recycling of supported metal catalysts: A perspective. ACS Catal. 2015;5:3430-3445. DOI: 10.1021/acscatal.5b00535.10.1021/acscatal.5b00535Open DOISearch in Google Scholar

[63] Molnár Á, Papp A. Catalyst recycling - A survey of recent progress and current status. Coord Chem Rev. 2017;349:1-65. DOI: 10.1016/j.ccr.2017.08.011.10.1016/j.ccr.2017.08.011Open DOISearch in Google Scholar

[64] Lundgren E, Zhang C, Merte LR, Shipilin M, Blomberg S, Hejral U, et al. Novel in situ techniques for studies of model catalysts. Acc Chem Res. 2017;50:2326-2333. DOI: 10.1021/acs.accounts.7b00281.10.1021/acs.accounts.7b0028128880530Open DOISearch in Google Scholar

[65] Liu JJ. Advanced electron microscopy of metal-support interactions in supported metal catalysts. Chem Cat Chem. 2011;3:934-948. DOI: 10.1002/cctc.201100090.10.1002/cctc.201100090Open DOISearch in Google Scholar

[66] Tao F, Tang D, Salmeron M, Somorjai GA. A new scanning tunneling microscope reactor used for high-pressure and high-temperature catalysis studies. Rev Sci Instrum. 2008;79:84101. DOI: 10.1063/1.2960569.10.1063/1.296056919044362Search in Google Scholar

[67] Prieto MJ, Schmidt T. LEEM and PEEM as probing tools to address questions in catalysis. Catal Lett. 2017;147:2487-2497. DOI: 10.1007/s10562-017-2162-x.10.1007/s10562-017-2162-xOpen DOISearch in Google Scholar

[68] Chenna S, Banerjee R, Crozier PA. Atomic-scale observation of the Ni activation process for partial oxidation of methane using in situ environmental TEM. Chem Cat Chem. 2011;3:1051-1059. DOI: 10.1002/cctc.201000238.10.1002/cctc.201000238Open DOISearch in Google Scholar

[69] Wang X, Huang S-C, Huang T-X, Su H-S, Zhong J-H, Zeng Z-C, et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem Soc Rev. 2017;46:4020-4041. DOI: 10.1039/C7CS00206H.10.1039/7CS00206Open DOISearch in Google Scholar

[70] Andanson J-M, Baiker A. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy. Chem Soc Rev. 2010;39:4571-4584. DOI: 10.1039/b919544k.10.1039/b919544k20890489Open DOISearch in Google Scholar

[71] Zaera F. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem Soc Rev. 2014;43:7624-7663. DOI: 10.1039/C3CS60374A.10.1039/C3CS60374Open DOISearch in Google Scholar

[72] Holade Y, Servat K, Tingry S, Napporn TW, Remita H, Cornu D, et al. Advances in electrocatalysis for energy conversion and synthesis of organic molecules. Chem Phys Chem. 2017;18:2573-605. DOI: 10.1002/cphc.201700447.10.1002/cphc.20170044728732139Open DOISearch in Google Scholar

[73] Yamashita H, Li H. Nanostructured photocatalysts: advanced functional materials. Cham: Springer; 2016. ISBN: 978-3-319-26079-2Search in Google Scholar

[74] García A, Fernandez-Blanco C, Herance JR, Albero J, García H. Graphenes as additives in photoelectrocatalysis. J Mater Chem A. 2017;5:16522-16536. DOI: 10.1039/C7TA04045H.10.1039/704045Open DOISearch in Google Scholar

[75] Augugliaro V, Camera-Roda G, Loddo V, Palmisano G, Palmisano L, Soria J, et al. Heterogeneous photocatalysis and photoelectrocatalysis: From unselective abatement of noxious species to selective production of high-value chemicals. J Phys Chem Lett. 2015;6:1968-1981. DOI: 10.1021/acs.jpclett.5b00294.10.1021/acs.jpclett.5b0029426263277Open DOISearch in Google Scholar

[76] Gandhi HS, Graham GW, McCabe RW. Automotive exhaust catalysis. J. Catal. 2003;216:433-442. DOI: 10.1016/S0021-9517(02)00067-2.10.1016/S0021-9517(02)00067-2Open DOISearch in Google Scholar

[77] Zabłocka-Malicka M, Szczepaniak W, Zielińska A, Rutkowski P. Steam gasification of oat with conversion of tars on clay catalyst and gas cleaning by condensation of steam. Ecol Chem Eng S. 2016;23:33-48. DOI: 10.1515/eces-2016-0002.10.1515/eces-2016-0002Open DOISearch in Google Scholar

[78] Kurzman JA, Misch LM, Seshadri R. Chemistry of precious metal oxides relevant to heterogeneous catalysis. Dalt Trans. 2013;42:14653-14667. DOI: 10.1039/c3dt51818c.10.1039/c3dt51818c24008693Open DOISearch in Google Scholar

[79] Gänzler AM, Casapu M, Vernoux P, Loridant S, Cadete Santos Aires FJ, Epicier T, et al. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew Chemie Int Ed. 2017;56:13078-13082. DOI: 10.1002/anie.201707842.10.1002/anie.20170784228796399Open DOISearch in Google Scholar

[80] Balaji Gopal C, García-Melchor M, Lee SC, Shi Y, Shavorskiy A, Monti M, et al. Equilibrium oxygen storage capacity of ultrathin CeO2-δ depends non-monotonically on large biaxial strain. Nat Commun. 2017;8:15360-15372. DOI: 10.1038/ncomms15360.10.1038/ncomms15360545437028516915Search in Google Scholar

[81] Zhao Z-J, Mu R, Wang X, Gong J. Fast prediction of CO binding energy via the local structure effect on PtCu alloy surfaces. Langmuir. 2017;33:8700-8706. DOI: 10.1021/acs.langmuir.7b00788.10.1021/acs.langmuir.7b0078828457131Open DOISearch in Google Scholar

[82] Caporali R, Chansai S, Burch R, Delgado JJ, Goguet A, Hardacre C, et al. Critical role of water in the direct oxidation of CO and hydrocarbons in Diesel exhaust after treatment catalysis. Appl Catal B Environ. 2014;147:764-769.10.1016/j.apcatb.2013.10.004Search in Google Scholar

[83] Jeon B, Kim A, Lee YA, Seo H, Kim YK. A spontaneous change in the oxidation states of Pd/WO3 toward an active phase during catalytic cycles of CO oxidation. Surf Sci. 2017;665:43-50. DOI: 10.1016/j.susc.2017.08.007.10.1016/j.susc.2017.08.007Open DOISearch in Google Scholar

[84] Miao M-S, Kurzman JA, Mammen N, Narasimhan S, Seshadri R. Trends in the electronic structure of extended gold compounds: Implications for use of gold in heterogeneous catalysis. Inorg Chem. 2012;51:7569-7578. DOI: 10.1021/ic3002674.10.1021/ic300267422765295Open DOISearch in Google Scholar

[85] Amin MT, Alazba AA, Manzoor U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng. 2014;2014:1-24. DOI: 10.1155/2014/825910.10.1155/2014/825910Open DOISearch in Google Scholar

[86] Huang H, Xu Y, Feng Q, Leung DYC. Low temperature catalytic oxidation of volatile organic compounds: A review. Catal Sci Technol. 2015;5:2649-2669. DOI: 10.1039/C4CY01733A.10.1039/C4CY01733Open DOISearch in Google Scholar

[87] Piumetti M, Bensaid S, Fino D, Russo N. Catalysis in Diesel engine NOx aftertreatment: a review. Catal Struct React. 2015;1:155-173. DOI: 10.1080/2055074X.2015.1105615.10.1080/2055074X.2015.1105615Open DOISearch in Google Scholar

[88] Shiotari A, Hatta S, Okuyama H, Aruga T. Role of hydrogen bonding in the catalytic reduction of nitric oxide. Chem Sci. 2014;5:922-926. DOI: 10.1039/C3SC52334A.10.1039/C3SC52334Open DOISearch in Google Scholar

[89] Shen Y, Ge X, Chen M. Catalytic oxidation of nitric oxide (NO) with carbonaceous materials. RSC Adv. 2016;6:8469-8482. DOI: 10.1039/C5RA24148K.10.1039/524148Open DOISearch in Google Scholar

[90] Zouzelka R, Rathousky J. Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Appl Catal B Environ. 2017;217:466-476. DOI: 10.1016/j.apcatb.2017.06.009.10.1016/j.apcatb.2017.06.009Open DOISearch in Google Scholar

[91] Martin M, Leonid S, Tomáš R, Jan Š, Jaroslav K, Mariana K, et al. Anatase TiO2 nanotube arrays and titania films on titanium mesh for photocatalytic NOX removal and water cleaning. Catal Today. 2017;287:59-64. DOI: 10.1016/j.cattod.2016.10.011.10.1016/j.cattod.2016.10.011Open DOISearch in Google Scholar

[92] Sázavská T, Šubrt J, Jakubičková M, Peterka F. Photocatalytic coatings - promising way to improve a quality of urban building surfaces. Chem Didact Ecol Metrol. 2015;20:113-122. DOI: 10.1515/cdem-2015-0012.10.1515/cdem-2015-0012Open DOISearch in Google Scholar

[93] Hu J, Chen D, Li N, Xu Q, Li H, He J, et al. In situ fabrication of Bi2O2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation. Appl Catal B Environ. 2017;217:224-231. DOI: 10.1016/j.apcatb.2017.05.088.10.1016/j.apcatb.2017.05.088Open DOISearch in Google Scholar

[94] Bahri M, Haghighat F. Plasma-based indoor air cleaning technologies: The state of the art-review. CLEAN - Soil Air Water. 2014;42:1667-1680. DOI: 10.1002/clen.201300296.10.1002/clen.201300296Open DOISearch in Google Scholar

[95] Lin M-W, Jwo C-S, Ho H-J, Chen L-Y. Using box modeling to determine photodegradation coefficients describing the removal of gaseous formaldehyde from indoor air. Aerosol Air Qual Res. 2017;17:330-339. DOI: 10.4209/aaqr.2016.09.0397.10.4209/aaqr.2016.09.0397Open DOISearch in Google Scholar

[96] Xuebao H, Xiao-dong Z. Recent progress in the removal of volatile organic compounds by mesoporous silica materials and supported catalysts. Acta Phys - Chim Sin. 2015;31:1633-1646. DOI: 10.3866/PKU.WHXB201507281.10.3866/PKU.WHXB201507281Open DOISearch in Google Scholar

[97] Silva B, Neves IC, Tavares T. A sustained approach to environmental catalysis: Reutilization of chromium from wastewater. Crit Rev Environ Sci Technol. 2016;46:1622-1657. DOI: 10.1080/10643389.2016.1255505.10.1080/10643389.2016.1255505Open DOISearch in Google Scholar

[98] Wang ZH, Zhang X, Zhu YQ, Ling ZQ, Zhou ZJ, Zhou JH, et al. Development of catalyst-sorbents for simultaneous removal of SO2 from flue gas by low temperature ozone oxidation. Ozone Sci Eng. 2012;34:204-212. DOI: 10.1080/01919512.2012.663726.10.1080/01919512.2012.663726Open DOISearch in Google Scholar

[99] Han GB, Park NK, Yoon SH, Lee TJ, Han GY. Direct reduction of sulfur dioxide to elemental sulfur with hydrogen over Sn-Zr-based catalysts. Ind Eng Chem Res. 2008;47:4658-4664. DOI: 10.1021/ie800058v.10.1021/ie800058vOpen DOISearch in Google Scholar

[100] He J, Wu P, Wu Y, Li H, Jiang W, Xun S, et al. Taming interfacial oxygen vacancies of amphiphilic tungsten oxide for enhanced catalysis in oxidative desulfurization. ACS Sustain Chem Eng. 2017;5:8930-8938. DOI: 10.1021/acssuschemeng.7b01741.10.1021/acssuschemeng.7b01741Open DOISearch in Google Scholar

[101] Saleh TA. Nanotechnology in Oil and Gas Industries. Cham: Springer Int Publishing; 2018. DOI: 10.1007/978-3-319-60630-9.10.1007/978-3-319-60630-9Open DOISearch in Google Scholar

[102] Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331-349. DOI: 10.1016/j.apcatb.2012.05.036.10.1016/j.apcatb.2012.05.036Open DOISearch in Google Scholar

[103] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37-38. DOI: 10.1038/238037a0.10.1038/238037a012635268Open DOISearch in Google Scholar

[104] Pellegrino F, Pellutiè L, Sordello F, Minero C, Ortel E, Hodoroaba VD, et al. Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Appl Catal B Environ. 2017;216:80-87. DOI: 10.1016/j.apcatb.2017.05.046.10.1016/j.apcatb.2017.05.046Open DOISearch in Google Scholar

[105] Guo X, Zhang G, Cui H, Wei N, Song X, Li J, et al. Porous TiB2-TiC/TiO2 heterostructures: Synthesis and enhanced photocatalytic properties from nanosheets to sweetened rolls. Appl Catal B Environ. 2017;217:12-20. DOI: 10.1016/j.apcatb.2017.05.079.10.1016/j.apcatb.2017.05.079Open DOISearch in Google Scholar

[106] Najafi M, Kermanpur A, Rahimipour MR, Najafizadeh A. Effect of TiO2 morphology on structure of TiO2-graphene oxide nanocomposite synthesized via a one-step hydrothermal method. J Alloys Compd. 2017;722:272-277. DOI: 10.1016/j.jallcom.2017.06.001.10.1016/j.jallcom.2017.06.001Open DOISearch in Google Scholar

[107] Dong W, Yao Y, Li L, Sun Y, Hua W, Zhuang G, et al. Three-dimensional interconnected mesoporous anatase TiO2 exhibiting unique photocatalytic performances. Appl Catal B Environ. 2017;217:293-302. DOI: 10.1016/j.apcatb.2017.05.083.10.1016/j.apcatb.2017.05.083Open DOISearch in Google Scholar

[108] Kudlek E, Silvestri D, Wacławek S, Padil VVT, Stuchlík M, Voleský L, et al. TiO2 immobilised on biopolymer nanofibers for the removal of bisphenol A and diclofenac from water. Ecol Chem Eng S. 2017;24:417-429. DOI: 10.1515/eces-2017-0028.10.1515/eces-2017-0028Open DOISearch in Google Scholar

[109] Leong S, Razmjou A, Wang K, Hapgood K, Zhang X, Wang H. TiO2 based photocatalytic membranes: A review. J Memb Sci. 2014;472:167-184. DOI: 10.1016/j.memsci.2014.08.016.10.1016/j.memsci.2014.08.016Open DOISearch in Google Scholar

[110] Wang W, Fang J, Shao S, Lai M, Lu C. Compact and uniform TiO2 @g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl Catal B Environ. 2017;217:57-64. DOI: 10.1016/j.apcatb.2017.05.037.10.1016/j.apcatb.2017.05.037Open DOISearch in Google Scholar

[111] Wang J, Yang Z, Gao X, Yao W, Wei W, Chen X, et al. Core-shell g-C3N4@ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities. Appl Catal B Environ. 2017;217:169-180. DOI: 10.1016/j.apcatb.2017.05.034.10.1016/j.apcatb.2017.05.034Open DOISearch in Google Scholar

[112] Zhou X, Wu J, Zhang JJ, He P, Ren J, Zhang JJ, et al. The effect of surface heterojunction between (001) and (101) facets on photocatalytic performance of anatase TiO2. Mater Lett. 2017;205:173-137.10.1016/j.matlet.2017.06.095Search in Google Scholar

[113] Tugaoen HON, Garcia-Segura S, Hristovski K, Westerhoff P. Challenges in photocatalytic reduction of nitrate as a water treatment technology. Sci Total Environ. 2017;599-600:1524-1551. DOI: 10.1016/j.scitotenv.2017.04.238.10.1016/j.scitotenv.2017.04.23828531961Open DOISearch in Google Scholar

[114] Molinari A, Sarti E, Marchetti N, Pasti L. Degradation of emerging concern contaminants in water by heterogeneous photocatalysis with Na4W10O32. Appl Catal B Environ. 2017;203:9-17. DOI: 10.1016/j.apcatb.2016.09.031.10.1016/j.apcatb.2016.09.031Open DOISearch in Google Scholar

[115] Wang WL, Meng Q, Weng X, Wu Z. Rapid syntheses of ultrafine LaMnO3 nano-crystallites with superior activity for catalytic oxidation of toluene. Catal Commun. 2016;84:167-170. DOI: 10.1016/j.catcom.2016.06.030.10.1016/j.catcom.2016.06.030Open DOISearch in Google Scholar

[116] Lin F, Shao B, Li Z, Zhang J, Wang H, Zhang S, et al. Visible light photocatalysis over solid acid: Enhanced by gold plasmonic effect. Appl Catal B Environ. 2017;218:480-487. DOI: 10.1016/j.apcatb.2017.06.076.10.1016/j.apcatb.2017.06.076Open DOISearch in Google Scholar

[117] Ho LEB, Becerra D, Angulo V, Salazar L. Biodegradability of agro-industrial wastewater photo treatment by heterogeneous catalysis. Afinidad. 2011;554:296-300.Search in Google Scholar

[118] Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ. 2001;31:145-157. DOI: 10.1016/S0926-3373(00)00276-9.10.1016/S0926-3373(00)00276-9Open DOISearch in Google Scholar

[119] Kale MJ, Avanesian T, Christopher P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014;4:116-128. DOI: 10.1021/cs400993w.10.1021/cs400993wOpen DOISearch in Google Scholar

[120] Tanaka A, Hashimoto K, Kominami H. A very simple method for the preparation of Au/TiO2 plasmonic photocatalysts working under irradiation of visible light in the range of 600-700 nm. Chem Commun. 2017;53:4759-62. DOI: 10.1039/C7CC01444A.10.1039/C7CC01444Open DOISearch in Google Scholar

[121] Pincella F, Isozaki K, Miki K. A visible light-driven plasmonic photocatalyst. Light Sci Appl. 2014;3:e133. DOI: 10.1038/lsa.2014.14.10.1038/lsa.2014.14Open DOISearch in Google Scholar

[122] Luo B, Xu D, Li D, Wu G, Wu M, Shi W, et al. Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. ACS Appl Mater Interfaces. 2015;7:17061-17069. DOI: 10.1021/acsami.5b03535.10.1021/acsami.5b0353526167624Open DOISearch in Google Scholar

[123] Mondal S, De Anda Reyes ME, Pal U. Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light. RSC Adv. 2017;7:8633-8645. DOI: 10.1039/C6RA28640B.10.1039/628640Open DOISearch in Google Scholar

[124] Fan R, Wang L, Chen Y, Zheng G, Li L, Li Z, et al. Tailored Au@TiO2 nanostructures for the plasmonic effect in planar perovskite solar cells. J Mater Chem A. 2017;5:12034-12042. DOI: 10.1039/C7TA02937C.10.1039/702937Open DOISearch in Google Scholar

[125] Zhu Y, Fan L, Yang B, Du J. Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS Nano. 2014;8:5022-5031. DOI: 10.1021/nn5010974.10.1021/nn501097424708437Search in Google Scholar

[126] Barakat T, Rooke JC, Genty E, Cousin R, Siffert S, Su B-L. Gold catalysts in environmental remediation and water-gas shift technologies. Energy Environ Sci. 2013;6:371-391. DOI: 10.1039/C2EE22859A.10.1039/C2EE22859Open DOISearch in Google Scholar

[127] Kästner C, Thünemann AF. Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir. 2016;32:7383-7391. DOI: 10.1021/acs.langmuir.6b01477.10.1021/acs.langmuir.6b0147727380382Open DOISearch in Google Scholar

[128] Li X, Zheng W, Chen B, Wang L, He G. Rapidly constructing multiple AuPt nanoalloy yolk@shell hollow particles in ordered mesoporous silica microspheres for highly efficient catalysis. ACS Sustain Chem Eng. 2016;4:2780-2788. DOI: 10.1021/acssuschemeng.6b00260.10.1021/acssuschemeng.6b00260Open DOISearch in Google Scholar

[129] Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA. Remediation of wastewater using various nano-materials. Arab J Chem. 2016. DOI: 10.1016/j.arabjc.2016.10.004.10.1016/j.arabjc.2016.10.004Open DOISearch in Google Scholar

[130] Siegrist RL, Crimi M, Simpkin TJ. In Situ Chemical Oxidation for Groundwater Remediation. Chapter 2: Fundamentals of ISCO using hydrogen peroxide. 2011. DOI: 10.1007/978-1-4419-7826-4.10.1007/978-1-4419-7826-4Open DOISearch in Google Scholar

[131] Govindan K, Raja M, Noel M, James EJ. Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide. J Hazard Mater. 2014;272:42-51. DOI: 10.1016/j.jhazmat.2014.02.036.10.1016/j.jhazmat.2014.02.03624675613Open DOISearch in Google Scholar

[132] Shah NS, He X, Khan HM, Khan JA, O’Shea KE, Boccelli DL, et al. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: A comparative study. J Hazard Mater. 2013;263:584-592. DOI: 10.1016/j.jhazmat.2013.10.019.10.1016/j.jhazmat.2013.10.01924231332Open DOISearch in Google Scholar

[133] Prucek R, Hermanek M, Zbořil R. An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation-A competition between homogeneous and heterogeneous catalysis. Appl Catal A Gen. 2009;366:325-332. DOI: 10.1016/j.apcata.2009.07.019.10.1016/j.apcata.2009.07.019Open DOISearch in Google Scholar

[134] Franzle S, Silbernagel H, Uchlier L, Liepelt G. Environmental heterogeneous catalysis and water purification by activated interfaces: a survey of different ways of surface activation and demonstration of a novel, simple and efficient procedure. Ecol Chem Eng S. 2010;17:25-36.Search in Google Scholar

[135] Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater. 2014;267:194-205. DOI: 10.1016/j.jhazmat.2013.12.062.10.1016/j.jhazmat.2013.12.06224457611Open DOISearch in Google Scholar

[136] Wacławek S, Nosek J, Cádrová L, Antoš V, Černík M. Use of various zero valent irons for degradation of chlorinated ethenes and ethanes. Ecol Chem Eng S. 2015;22:577-587. DOI: 10.1515/eces-2015-0034.10.1515/eces-2015-0034Open DOISearch in Google Scholar

[137] Hrabák P, Homolková M, Wacławek S, Černík M. Chemical degradation of PCDD/F in contaminated sediment. Ecol Chem Eng S. 2016;23:473-482. DOI: 10.1515/eces-2016-0034.10.1515/eces-2016-0034Open DOISearch in Google Scholar

[138] Wang Y, Ao Z, Sun H, Duan X, Wang S. Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations. Appl Catal B Environ. 2016;198:295-302. DOI: 10.1016/j.apcatb.2016.05.075.10.1016/j.apcatb.2016.05.075Open DOISearch in Google Scholar

[139] Wacławek S, Antoš V, Hrabák P, Černík M. Remediation of hexachlorocyclohexanes by cobalt-mediated activation of peroxymonosulfate. Desalin Water Treat. 2015:1-6. DOI: 10.1080/19443994.2015.1119757.10.1080/19443994.2015.1119757Open DOISearch in Google Scholar

[140] Wacławek S, Grübel K, Černík M. The impact of peroxydisulphate and peroxymonosulphate on disintegration and settleability of activated sludge. Environ Technol (United Kingdom). 2016;37:1296-1304. DOI: 10.1080/09593330.2015.1112434.10.1080/09593330.2015.111243426503018Open DOISearch in Google Scholar

[141] Wacławek S, Grübel K, Dennis P, Padil VTP, Černík M. A novel approach for simultaneous improvement of dewaterability, post-digestion liquor properties and toluene removal from anaerobically digested sludge. Chem Eng J. 2016;291:192-198. DOI: 10.1016/j.cej.2016.01.103.10.1016/j.cej.2016.01.103Open DOISearch in Google Scholar

[142] Matzek LW, Carter KE. Activated persulfate for organic chemical degradation: A review. Chemosphere. 2016;151:178-188. DOI: 10.1016/j.chemosphere.2016.02.055.10.1016/j.chemosphere.2016.02.05526938680Open DOISearch in Google Scholar

[143] Lee HHJ, Lee HHJ, Jeong J, Lee J, Park NB, Lee C. Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. Chem Eng J. 2015;266:28-33. DOI: 10.1016/j.cej.2014.12.065.10.1016/j.cej.2014.12.065Open DOISearch in Google Scholar

[144] Duan X, Sun H, Kang J, Wang Y, Indrawirawan S, Wang S. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. ACS Catal. 2015;5:4629-4636. DOI: 10.1021/acscatal.5b00774.10.1021/acscatal.5b00774Open DOISearch in Google Scholar

[145] Chen H, Carroll KC. Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene. Environ Pollut. 2016;215:96-102. DOI: 10.1016/j.envpol.2016.04.088.10.1016/j.envpol.2016.04.08827179328Open DOISearch in Google Scholar

[146] Lee H, Lee C, Kim JH. Response to comment on “activation of persulfate by graphitized nanodiamonds for removal of organic compounds.” Environ Sci Technol. 2017;51:5353-5354. DOI: 10.1021/acs.est.7b01642.10.1021/acs.est.7b0164228409917Open DOISearch in Google Scholar

[147] Ahmad M, Teel AL, Watts RJ. Persulfate activation by subsurface minerals. J Contam Hydrol. 2010;115:34-45. DOI: 10.1016/j.jconhyd.2010.04.002.10.1016/j.jconhyd.2010.04.00220439128Open DOISearch in Google Scholar

[148] Elliott DW, Zhang W. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol. 2001;35:4922-4926. DOI: 10.1021/es0108584.10.1021/es0108584Open DOISearch in Google Scholar

[149] Elliott DW, Lien H-L, Zhang W-X. Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng. 2009;135:317-324. DOI: 10.1061/(ASCE)0733-9372(2009)135:5(317).10.1061/(ASCE)0733-9372(2009)135:5(317)Open DOISearch in Google Scholar

[150] Mosaferi M, Nemati S, Khataee AR, Nasseri S, Hashemi A. Removal of arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. J Environ Heal Sci Eng. 2014;12:74-85. DOI: 10.1186/2052-336X-12-74.10.1186/2052-336X-12-74401381824860660Open DOISearch in Google Scholar

[151] Thekkae Padil VV, Filip J, Suresh KI, Wacławek S, Černík M. Electrospun membrane composed of poly [acrylonitrile-co-(methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water. RSC Adv. 2016;6:110288-110300. DOI: 10.1039/C6RA24036D.10.1039/C6RA24036DSearch in Google Scholar

[152] Zhu H, Jia Y, Wu X, Wang H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater. 2009;172:1591-1596. DOI: 10.1016/j.jhazmat.2009.08.031.10.1016/j.jhazmat.2009.08.03119733972Open DOISearch in Google Scholar

[153] Padil VVT, Wacławek S, Senan C, Kupčík J, Pešková K, Černík M, et al. Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: characterization and applications for the removal of chromium and volatile organic pollutants from water. RSC Adv. 2017;7:13997-4009. DOI: 10.1039/C7RA00464H.10.1039/700464Open DOISearch in Google Scholar

[154] Krol MM, Oleniuk AJ, Kocur CM, Sleep BE, Bennett P, Xiong Z, et al. A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environ Sci Technol. 2013;47:7332-7340. DOI: 10.1021/es3041412.10.1021/es304141223725414Open DOISearch in Google Scholar

[155] Němeček J, Pokorný P, Lhotský O, Knytl V, Najmanová P, Steinová J, et al. Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Sci Total Environ. 2016;563:822-834. DOI: 10.1016/j.scitotenv.2016.01.019.10.1016/j.scitotenv.2016.01.01926850861Open DOISearch in Google Scholar

[156] Centi G, van Santen RA. Catalysis for Renewables: From Feedstock to Energy Production. Weinheim: Wiley-VCH Verlag GmbH Co. KGaA; 2007. DOI: 10.1002/9783527621118.10.1002/9783527621118Open DOISearch in Google Scholar

[157] Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev. 2014;43:7520-7535. DOI: 10.1039/C3CS60378D.10.1039/C3CS60378Open DOISearch in Google Scholar

[158] Wang T, Luo Z, Li C, Gong J. Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition. Chem Soc Rev. 2014;43:7469-7484. DOI: 10.1039/C3CS60370A.10.1039/C3CS60370Open DOISearch in Google Scholar

[159] Pfeffer MG, Schäfer B, Smolentsev G, Uhlig J, Nazarenko E, Guthmuller J, et al. Palladium versus platinum: The metal in the catalytic center of a molecular photocatalyst determines the mechanism of the hydrogen production with visible light. Angew Chemie Int Ed. 2015;54:5044-5048. DOI: 10.1002/anie.201409438.10.1002/anie.20140943825613551Open DOISearch in Google Scholar

[160] Li YH, Zheng LR, Yang HG. A novel strategy for tailoring copper oxide cluster with Pt-like activity for photocatalytic hydrogen evolution. Int J Hydrogen Energy. 2015;40:15454-15459. DOI: 10.1016/j.ijhydene.2015.09.090.10.1016/j.ijhydene.2015.09.090Open DOISearch in Google Scholar

[161] Yu X, Li W, Li Z, Liu J, Hu P. Defect engineered Ta2O5 nanorod: One-pot synthesis, visible-light driven hydrogen generation and mechanism. Appl Catal B Environ. 2017;217:48-56. DOI: 10.1016/j.apcatb.2017.05.024.10.1016/j.apcatb.2017.05.024Open DOISearch in Google Scholar

[162] Lei Y, Yang C, Hou J, Wang F, Min S, Ma X, et al. Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots. Appl Catal B Environ. 2017;216:59-69. DOI: 10.1016/j.apcatb.2017.05.063.10.1016/j.apcatb.2017.05.063Open DOISearch in Google Scholar

[163] Wang SL, Li J, Wang S, Wu J, Wong TI, Foo ML, et al. Two-dimensional C/TiO2 heterogeneous hybrid for noble-metal-free hydrogen evolution. ACS Catal. 2017;7:6892-6900. DOI: 10.1021/acscatal.7b02331.10.1021/acscatal.7b02331Open DOISearch in Google Scholar

[164] Kwak K, Choi W, Tang Q, Kim M, Lee Y, Jiang D, et al. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat Commun. 2017;8:14723-14731. DOI: 10.1038/ncomms14723.10.1038/ncomms14723535357028281526Search in Google Scholar

[165] Passalacqua R, Centi G, Perathoner S, Balantseva E, Camino B, Ferrari AM, et al. Solar production of fuels from water and CO2: Perspectives and opportunities for a sustainable use of renewable energy. Oil Gas Sci Technol - Rev IFP Energies Nouv. 2015;70:791-902.10.2516/ogst/2015034Search in Google Scholar

[166] Lu X, Xie S, Yang H, Tong Y, Ji H. Photoelectrochemical hydrogen production from biomass derivatives and water. Chem Soc Rev. 2014;43:7581-7593. DOI: 10.1039/C3CS60392J.10.1039/C3CS60392J24599050Open DOISearch in Google Scholar

[167] Srifa A, Okura K, Okanishi T, Muroyama H, Matsui T, Eguchi K. Hydrogen production by ammonia decomposition over Cs-modified Co3Mo3N catalysts. Appl Catal B Environ. 2017;218:1-8. DOI: 10.1016/j.apcatb.2017.06.034.10.1016/j.apcatb.2017.06.034Open DOISearch in Google Scholar

[168] Pastor-Pérez L, Baibars F, Le Sache E, Arellano-García H, Gu S, Reina TR. CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts. J CO2 Util. 2017;21:423-428. DOI: 10.1016/J.JCOU.2017.08.009.10.1016/j.jcou.2017.08.009Open DOISearch in Google Scholar

[169] Zhang Z, Wang S-S, Song R, Cao T, Luo L, Chen X, et al. The most active Cu facet for low-temperature water gas shift reaction. Nat Commun. 2017;8:488-498. DOI: 10.1038/s41467-017-00620-6.10.1038/s41467-017-00620-6559121328887563Search in Google Scholar

[170] Sun K, Kohyama M, Tanaka S, Takeda S. Reaction mechanism of the low-temperature water-gas shift reaction on Au/TiO2 catalysts. J Phys Chem C. 2017;121:12178-12187. DOI: 10.1021/acs.jpcc.7b02400.10.1021/acs.jpcc.7b02400Open DOISearch in Google Scholar

[171] Zhu M, Wachs IE. Iron-based catalysts for the high-temperature water-gas shift (HT-WGS) reaction: A review. ACS Catal. 2016;6:722-732. DOI: 10.1021/acscatal.5b02594.10.1021/acscatal.5b02594Open DOISearch in Google Scholar

[172] Yao S, Zhang X, Zhou W, Gao R, Xu W, Ye Y, et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science. 2017;357:389-393. DOI: 10.1126/science.aah4321.10.1126/.aah4321Open DOISearch in Google Scholar

[173] Sassmanova V, Janouchova R, Frantik J, Machackova I, Juchelkova D. Influence of catalysts on water-gas shift reaction and hydrogen recovery. IERI Procedia. 2014;8:164-149. DOI: 10.1016/j.ieri.2014.09.027.10.1016/j.ieri.2014.09.027Search in Google Scholar

[174] Wang H, Blaylock DW, Dam AH, Liland SE, Rout KR, Zhu Y-A, et al. Steam methane reforming on a Ni-based bimetallic catalyst: density functional theory and experimental studies of the catalytic consequence of surface alloying of Ni with Ag. Catal Sci Technol. 2017;7:1713-1725. DOI: 10.1039/C7CY00101K.10.1039/C7CY00101Open DOISearch in Google Scholar

[175] Abbas SZ, Dupont V, Mahmud T. Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. Int J Hydrogen Energy. 2017;42:2889-2903. DOI: 10.1016/j.ijhydene.2016.11.093.10.1016/j.ijhydene.2016.11.093Open DOISearch in Google Scholar

[176] Arevalo RL, Aspera SM, Sison Escaño MC, Nakanishi H, Kasai H. Ru-catalyzed steam methane reforming: Mechanistic study from first principles calculations. ACS Omega. 2017;2:1295-1301. DOI: 10.1021/acsomega.6b00462.10.1021/acsomega.6b00462664099431457505Open DOISearch in Google Scholar

[177] Xu Y, Lausche AC, Wang S, Khan TS, Abild-Pedersen F, Studt F, et al. In silico search for novel methane steam reforming catalysts. New J Phys. 2013;15:125021. DOI: 10.1088/1367-2630/15/12/125021.10.1088/1367-2630/15/12/125021Search in Google Scholar

[178] Smith PJ, Kondrat SA, Chater PA, Yeo BR, Shaw GM, Lu L, et al. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chem Sci. 2017;8:2436-2447. DOI: 10.1039/C6SC04130B.10.1039/C6SC04130BSearch in Google Scholar

[179] Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies. Chem Eng Res Des. 2014;92:2557-2567. DOI: 10.1016/j.cherd.2014.03.005.10.1016/j.cherd.2014.03.005Open DOISearch in Google Scholar

[180] Porosoff MD, Yang X, Boscoboinik JA, Chen JG. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chemie Int Ed. 2014;53:6705-6709. DOI: 10.1002/anie.201404109.10.1002/anie.20140410924839958Open DOISearch in Google Scholar

[181] García-Trenco A, Regoutz A, White ER, Payne DJ, Shaffer MSP, Williams CK. PdIn intermetallic nanoparticles for the hydrogenation of CO2 to methanol. Appl Catal B Environ. 2018;220:9-18. DOI: 10.1016/j.apcatb.2017.07.069.10.1016/j.apcatb.2017.07.069Open DOISearch in Google Scholar

[182] Wu C, Zhang P, Zhang Z, Zhang L, Yang G, Han B. Efficient hydrogenation of CO2 to methanol over supported subnanometer gold catalysts at low temperature. Chem Cat Chem. 2017;9:3691-3696. DOI: 10.1002/cctc.201700872.10.1002/cctc.201700872Open DOISearch in Google Scholar

[183] Sun K, Cheng T, Wu L, Hu Y, Zhou J, Maclennan A, et al. Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles. J Am Chem Soc. 2017;139:15608-15611. DOI: 10.1021/jacs.7b09251.10.1021/jacs.7b0925128990777Open DOISearch in Google Scholar

[184] Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, et al. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J Catal. 2016;343:133-146. DOI: 10.1016/j.jcat.2016.03.017.10.1016/j.jcat.2016.03.017Open DOISearch in Google Scholar

[185] Wu P, Yang B. Significance of surface formate coverage on the reaction kinetics of methanol synthesis from CO2 hydrogenation over Cu. ACS Catal. 2017;7:7187-7195. DOI: 10.1021/acscatal.7b01910.10.1021/acscatal.7b01910Open DOISearch in Google Scholar

[186] Truong QD, Hoa HT, Le TS. Rutile TiO2 nanocrystals with exposed {3 3 1} facets for enhanced photocatalytic CO2 reduction activity. J Colloid Interface Sci. 2017;504:223-229. DOI: 10.1016/j.jcis.2017.05.045.10.1016/j.jcis.2017.05.04528551516Open DOISearch in Google Scholar

[187] Aguirre ME, Zhou R, Eugene AJ, Guzman MI, Grela MA. Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. Appl Catal B Environ. 2017;217:485-493. DOI: 10.1016/j.apcatb.2017.05.058.10.1016/j.apcatb.2017.05.058Open DOISearch in Google Scholar

[188] Castellani B, Gambelli AM, Morini E, Nastasi B, Presciutti A, Filipponi M, et al. Experimental investigation on CO2 methanation process for solar energy storage compared to CO2-based methanol synthesis. Energies. 2017;10:855-867. DOI: 10.3390/en10070855.10.3390/en10070855Search in Google Scholar

[189] Li W, Nie X, Jiang X, Zhang A, Ding F, Liu M, et al. ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation. Appl Catal B Environ. 2018;220:397-408. DOI: 10.1016/j.apcatb.2017.08.048.10.1016/j.apcatb.2017.08.048Open DOISearch in Google Scholar

[190] Mutz B, Belimov M, Wang W, Sprenger P, Serrer M-A, Wang D, et al. Potential of an alumina-supported Ni3Fe catalyst in the methanation of CO2: Impact of alloy formation on activity and stability. ACS Catal. 2017;7:6802-6814. DOI: 10.1021/acscatal.7b01896.10.1021/acscatal.7b01896Open DOISearch in Google Scholar

[191] Veselovskaya JV, Parunin PD, Okunev AG. Catalytic process for methane production from atmospheric carbon dioxide utilizing renewable energy. Catal Today. 2017;298:117-123. DOI: 10.1016/j.cattod.2017.05.044.10.1016/j.cattod.2017.05.044Open DOISearch in Google Scholar

[192] Liu C, Wang H, Karim AM, Sun J, Wang Y. Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev. 2014;43:7594-7623. DOI: 10.1039/C3CS60414D.10.1039/C3CS60414Open DOISearch in Google Scholar

[193] Yamaguchi A, Hiyoshi N, Sato O, Bando KK, Shirai M. Gaseous fuel production from nonrecyclable paper wastes by using supported metal catalysts in high-temperature liquid water. Chem Sus Chem. 2010;3:737-741. DOI: 10.1002/cssc.201000082.10.1002/cssc.20100008220512801Open DOISearch in Google Scholar

[194] Yan B, Wu J, Xie C, He F, Wei C. Supercritical water gasification with Ni/ZrO2 catalyst for hydrogen production from model wastewater of polyethylene glycol. J Supercrit Fluids. 2009;50:155-161. DOI: 10.1016/j.supflu.2009.04.015.10.1016/j.supflu.2009.04.015Open DOISearch in Google Scholar

[195] Werle S, Dudziak M. Evaluation of the possibility of the sewage sludge gasification gas use as a fuel. Ecol Chem Eng S. 2016;23:229-236. DOI: 10.1515/eces-2016-0015.10.1515/eces-2016-0015Open DOISearch in Google Scholar

[196] Werle S, Dudziak M. Influence of wastewater treatment and the method of sludge disposal on the gasification process. Ecol Chem Eng S. 2014;21:255-268. DOI: 10.2478/eces-2014-0020.10.2478/eces-2014-0020Open DOISearch in Google Scholar

[197] Werle S. Sewage sludge-to-energy management in eastern europe: A polish perspective. Ecol Chem Eng S. 2015;22:459-469. DOI: 10.1515/eces-2015-0027.10.1515/eces-2015-0027Open DOISearch in Google Scholar

[198] Ruddy DA, Schaidle JA, Ferrell III JR, Wang J, Moens L, Hensley JE. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem. 2014;16:454-490. DOI: 10.1039/C3GC41354C.10.1039/C3GC41354Open DOISearch in Google Scholar

[199] Agblevor FA, Elliott DC, Santosa DM, Olarte M V., Burton SD, Swita M, et al. Red mud catalytic pyrolysis of pinyon juniper and single-stage hydrotreatment of oils. Energy Fuels. 2016;30:7947-7958. DOI: 10.1021/acs.energyfuels.6b00925.10.1021/acs.energyfuels.6b00925Open DOISearch in Google Scholar

[200] Taifan W, Baltrusaitis J. CH4 conversion to value added products: Potential, limitations and extensions of a single step heterogeneous catalysis. Appl Catal B Environ. 2016;198:525-547. DOI: 10.1016/j.apcatb.2016.05.081.10.1016/j.apcatb.2016.05.081Open DOISearch in Google Scholar

[201] Stroud T, Smith TJ, Le Saché E, Santos JL, Centeno MA, Arellano-Garcia H, et al. Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl Catal B Environ. 2018;224:125-135. DOI: 10.1016/j.apcatb.2017.10.047.10.1016/j.apcatb.2017.10.047Open DOISearch in Google Scholar

[202] Lee AF, Bennett JA, Manayil JC, Wilson K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev. 2014;43:7887-7916. DOI: 10.1039/C4CS00189C.10.1039/4CS00189Open DOISearch in Google Scholar

[203] Chang F, Zhou Q, Pan H, Liu X-F, Zhang H, Xue W, et al. Solid mixed-metal-oxide catalysts for biodiesel production: A review. Energy Technol. 2014;2:865-873. DOI: 10.1002/ente.201402089.10.1002/ente.201402089Open DOISearch in Google Scholar

[204] Singh D, Ganesh A, Mahajani S. Heterogeneous catalysis for biodiesel synthesis and valorization of glycerol. Clean Technol Environ Policy. 2015;17:1103-1110. DOI: 10.1007/s10098-014-0858-9.10.1007/s10098-014-0858-9Open DOISearch in Google Scholar

[205] Wilson K, Lee AF. Catalyst design for biorefining. Philos Trans A. Math Phys Eng Sci. 2016;374:20150081. DOI: 10.1098/rsta.2015.0081.10.1098/rsta.2015.008126755755Search in Google Scholar

[206] Guo X, Yan Y, Zhang Y, Tang Y. Heterogeneously catalytic transformation of biomass-derived sugars. Prog Chem. 2013;25:1915-1927. DOI: 10.7536/PC130152.10.7536/PC130152Open DOISearch in Google Scholar

[207] Georgogianni KG, Katsoulidis AK, Pomonis PJ, Manos G, Kontominas MG. Transesterification of rapeseed oil for the production of biodiesel using homogeneous and heterogeneous catalysis. Fuel Process Technol. 2009;90:1016-1022. DOI: 10.1016/j.fuproc.2009.03.002.10.1016/j.fuproc.2009.03.002Open DOISearch in Google Scholar

[208] Gu M, Xia Q, Liu X, Guo Y, Wang Y. Synthesis of renewable lubricant alkanes from biomass-derived platform chemicals. Chem Sus Chem. 2017;10:4102-4108. DOI: 10.1002/cssc.201701200.10.1002/cssc.20170120028834404Search in Google Scholar

eISSN:
1898-6196
Language:
English