The effect of tropospheric ozone on flavonoids and pigments content in common buckwheat cotyledons

Open access


Tropospheric ozone forms in photochemical reactions or by refuse burning and combustion of exhaust gases from engines, and during some industrial processes. The mean ambient ozone concentration doubled during the last century, and in many urban areas has reached the phytotoxic level. In the present study, there was determined the effect of ozone fumigation on levels of individual flavonoids, chlorophylls, carotenoids and total phenols in the cotyledons of four common buckwheat cultivars (Hruszowska, Panda, Kora and Red Corolla). Six-day-old buckwheat seedlings were grown in controlled conditions and treated with an elevated dose of ozone (391 μg · m−3) during 5 days for 1 h each day. After the experiment, the cotyledons of the seedlings were analysed for individual flavonoids, chlorophylls, carotenoids and total phenols. Shoot elongation was also measured. Individual types of flavonoids in buckwheat cotyledons were found to respond to an elevated ozone dose in various ways. The response was also dependent on the cultivar evaluated. In the cotyledons of ozonized buckwheat seedlings, contents of C-glucosides of luteolin and apigenin decreased or did not change depending on the cultivar examined. In the case of flavonols, the contents of quercetin-3-O-rhamnosyl-galactoside and rutin (quercetin-3-O-rhamnosyl-glucoside) were markedly reduced in most cultivars. O3 had no effect on the level of anthocyanins and chlorophylls but it decreased carotenoids, and tended to inhibit buckwheat growth. In conclusion, a thesis can be formulated that, due to high reduction in important flavonoids, an elevated level of ambient ozone decreases the nutritional value of common buckwheat seedlings.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Krupa SV Gruenhage L Jaeger H-J Nosal M Manning WJ Legge AH et al. Ambient ozone (O3) and adverse crop response: A unified view of cause and effect. Environ Pollut. 1995;87:19-126. DOI: 10.1016/S0269-7491(99)80014-1.

  • [2] Bytnerowicz A Manning WJ Grosjean D Chmielewski W Dmuchowski W Grodzinska K et al. Detecting ozone and demonstrating its phytotoxicity in forested areas of Poland: a pilot study. Environ Pollut. 1993;80:301-305. DOI: 10.1016/0269-7491(93)90052-P.

  • [3] Betzelberger AM Yendrek CR Sun J Leisner CP Nelson RL Ort DR et al. Ozone exposure response for U.S. soybean cultivars: linear reductions in photosynthetic potential biomass and yield. Plant Physiol. 2012;160:1827-1839. DOI: 10.1104/pp.112.205591.

  • [4] Booker FL Muntifering R McGrath M Burkey KO Decoteau D Fiscus EL et al. The ozone component of global change: potential effects on agricultural and horticultural plant yield product quality and interactions with invasive species. J Integr Plant Biol. 2009;51:337-351. DOI: 10.1111/j.1744-7909.2008.00805.x.

  • [5] Krzyżaniak M Świerk D Urbański P Walerzak MT. Evaluation of the effect of environmental variables on health condition of Quercus robur L. in parks. Ecol Chem Eng S. 2013;20:689-700. DOI: 10.2478/eces-2013-0047.

  • [6] Fiscus EL Booker FL Burkey KO. Crop responses to ozone: uptake modes of action carbon assimilation and partitioning. Plant Cell Environ. 2005;28:997-1011. DOI: 10.1111/j.1365-3040.2005.01349.x.

  • [7] Dixon RA Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell 1995; 7:1085-1097. DOI: 10.1105/tpc.7.7.1085.

  • [8] Betzelberger A. Current and future consequences of tropospheric ozone on soybean biochemistry physiology and yield. [PhD thesis]. Urbana-Champaign: University of Illinois; 2013.

  • [9] Saviranta NM Julkunen-Tiitto R Oksanen E Karjalainen RO. Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Environ Pollut. 2010;158:440-446. DOI: 10.1016/j.envpol.2009.08.029.

  • [10] Didyk NP Blum OB. Natural antioxidants of plant origin against ozone damage of sensitive crops. Acta Physiol Plant. 2011;33:25-34. DOI: 10.1007/s11738-010-0527-5.

  • [11] Betz GA Knappe C Lapierre C Olbrich M Welzl G Langebartels C et al. Ozone affects shikimate pathway transcripts and monomeric lignin composition in European beech (Fagus sylvatica L.). Eur J For Res. 2009;128:109-116. DOI: 10.1007/s10342-008-0216-8.

  • [12] Richet N Tozo K Afif D Banvoy J Legay S Dizengremel P et al. The response to daylight or continuous ozone of phenylpropanoid and lignin biosynthesis pathways in poplar differs between leaves and wood. Planta 2012;236:727-737. DOI: 10.1007/s00425-012-1644-8.

  • [13] Saleem A Loponen J Pihlaja K Oksanen E. Effects of long-term open-field ozone exposure on leaf phenolics of European silver birch (Betula pendula Roth). J Chem Ecol. 2001;27:1049-1062. DOI: 10.1023/A:1010351406931.

  • [14] Peltonen PA Vapaavuori E Julkunen-Tiitto R. Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biol. 2005;11:1305-1324. DOI: 10.1111/j.1365-2486.2005.00979.x.

  • [15] Singh AA Agrawal SB Shahi JP Agrawal M. Investigating the response of tropical maize (Zea mays L.) cultivars against elevated levels of O3 at two developmental stages. Ecotoxicology 2014;23:1447-1463. DOI: 10.1007/s10646-014-1287-6.

  • [16] He X Huang W Chen W Dong T Liu C Chen Z et al. Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation. J Environ Sci. 2009;21:199-203. DOI: 10.1016/S1001-0742(08)62251-2.

  • [17] Haikio E Freiwald V Julkunen-Tiitto R Beuker E Holopainen T Oksanen E. Differences in leaf characteristics between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula × Populus tremuloides) clones. Tree Physiol. 2009;29:53-66. DOI: 10.1093/treephys/tpn005.

  • [18] Sarkar A Singh AA Agrawal SB Ahmad A Rai SP. Cultivar specific variations in antioxidative defense system genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotox Environ Safe. 2015;115:101-111. DOI: 10.1016/j.ecoenv.2015.02.010.

  • [19] Chaudhary N Agrawal SB. The role of elevated ozone on growth yield and seed quality amongst six cultivars of mung bean. Ecotox Environ Safe. 2015;111:286-294. DOI: 10.1016/j.ecoenv.2014.09.018.

  • [20] Saitanis CJ Riga-Karandinos AN Karandinos MG. Effect of ozone on chlorophyll and quantum yield of tobacco (Nicotiana tabacum L.). Chemosphere. 2001;42:945-953. DOI: 10.1016/S0045-6535(00)00158-2.

  • [21] Morgan PB Ainsworth EA Long SP. How does elevated ozone impact soybean? A meta-analysis of photosynthesis growth and yield. Plant Cell Environ. 2003;26:1317-1328. DOI: 10.1046/j.0016-8025.2003.01056.x.

  • [22] Dėdelienė K Juknys R. Response of several spring barley cultivars to UV-B radiation and ozone treatment. Environ Res Engin Manage. 2010;4:13-19.

  • [23] Goumenaki E Taybi T Borland A Barnes J. Mechanisms underlying the impacts of ozone on photosynthetic performance. Environ Exp Bot. 2010;69:259-266. DOI: 10.1016/j.envexpbot.2010.04.011.

  • [24] Caregnato FF Bortolin RC Junior AMD Moreira JCF. Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseouls vulgaris L. varieties. Chemosphere 2013;93:320-330.

  • [25] Anderson PD Palmer B Houpis JLJ Smith MK Pushnik JC. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure. Environ Int. 2003;29:407-413. DOI: 10.1016/S0160-4120(02)00177-0.

  • [26] Horbowicz M Wiczkowski W Koczkodaj D Saniewski M. Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol Hungar. 2011;62:265-278. DOI: 10.1556/ABiol.62.2011.3.6.

  • [27] Wiczkowski W Szawara-Nowak D Dębski H Mitrus J Horbowicz M. Comparison of flavonoids profile in sprouts of common buckwheat cultivars and wild tartary buckwheat. Int J Food Sci Tech. 2014;49:1977-1984. DOI:10.1111/ijfs.12484.

  • [28] Horbowicz M Grzesiuk A Dębski H Koczkodaj D Saniewski M. Methyl jasmonate inhibits anthocyanins synthesis in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol Cracow Bot. 2008;50:71-78.

  • [29] Horbowicz M Dębski H Wiczkowski W Szawara-Nowak J Koczkodaj D Mitrus J et al. The impact of short-term exposure to Pb and Cd on flavonoids composition and seedlings growth of common buckwheat cultivars. Pol J Environ Stud. 2013;22:1723-1730.

  • [30] Lichtenthaler HK Welburn AR. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983;603:591-592.

  • [31] Barańska K Klech T. Roczna ocena jakości powietrza w województwie mazowieckim. Raport za rok 2013. 2014.,Roczna-Ocena-Jakosci-Powietrza-w-wojewodztwie-mazowieckim-Raport-za-rok-2013.html.

  • [32] Ohnishi O. Analyses of genetic variants in common buckwheat Fagopyrum esculentum Moench: a review. Fagopyrum. 1990;10:12-22. DOI: 10.1266/jjg.62.397.

  • [33] Rice-Evans CA Miller NJ Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med. 1996;20:933-956. DOI: 10.1016/0891-5849(95)02227-9.

  • [34] Booker FL Miller JE. Phenylpropanoid metabolism and phenolic composition of soybean (Glycine max) leaves following exposure to ozone. J Exp Bot. 1998;49:1191-1202. DOI: 10.1093/jxb/49.324.1191.

  • [35] Mikkelsen TN Dodell B Lutz C. Changes in pigment concentration and composition in Norway spruce induced by long-term exposure to low levels of ozone. Environ Pollut. 1995;87:197-205. DOI: 10.1016/0269-7491(94)P2607-B.

  • [36] Kollner B Krause GHM. Changes in carbohydrates leaf pigments and yield in potatoes induced by different ozone exposure regimes. Agric Ecosyst Environ. 2000;78:149-158. DOI: 10.1016/S0167-8809(99)00118-8.

  • [37] Holzwarth AR Miloslavina Y Nilkens M Jahns P. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett. 2009;483:262-267. DOI: 10.1016/j.cplett.2009.10.085.

  • [38] Cazzonelli CI. Carotenoids in nature: insights from plants and beyond. Funct Plant Biol. 2011;38:833-847. DOI: 10.1071/FP11192.

  • [39] Wittig VE Ainsworth EA Naidu SL Karnosky DF Long SP. Quantifying the impact of current and future tropospheric ozone on tree biomass growth physiology and biochemistry: a quantitative meta-analysis. Global Change Biol. 2009;15:396-424. DOI: 10.1111/j.1365-2486.2008.01774.x.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 400 227 6
PDF Downloads 165 101 3