Cite

[1] Krupa SV, Gruenhage L, Jaeger H-J, Nosal M, Manning WJ, Legge AH, et al. Ambient ozone (O3) and adverse crop response: A unified view of cause and effect. Environ Pollut. 1995;87:19-126. DOI: 10.1016/S0269-7491(99)80014-1.10.1016/S0269-7491(99)80014-1Open DOISearch in Google Scholar

[2] Bytnerowicz A, Manning WJ, Grosjean D, Chmielewski W, Dmuchowski W, Grodzinska K, et al. Detecting ozone and demonstrating its phytotoxicity in forested areas of Poland: a pilot study. Environ Pollut. 1993;80:301-305. DOI: 10.1016/0269-7491(93)90052-P.10.1016/0269-7491(93)90052-Open DOISearch in Google Scholar

[3] Betzelberger AM, Yendrek CR, Sun J, Leisner CP, Nelson RL, Ort DR, et al. Ozone exposure response for U.S. soybean cultivars: linear reductions in photosynthetic potential, biomass, and yield. Plant Physiol. 2012;160:1827-1839. DOI: 10.1104/pp.112.205591.10.1104/pp.112.205591351011323037504Open DOISearch in Google Scholar

[4] Booker FL, Muntifering R, McGrath M, Burkey KO, Decoteau D, Fiscus EL, et al. The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol. 2009;51:337-351. DOI: 10.1111/j.1744-7909.2008.00805.x.10.1111/j.1744-7909.2008.00805.x21452584Open DOISearch in Google Scholar

[5] Krzyżaniak M, Świerk D, Urbański P, Walerzak MT. Evaluation of the effect of environmental variables on health condition of Quercus robur L. in parks. Ecol Chem Eng S. 2013;20:689-700. DOI: 10.2478/eces-2013-0047.10.2478/eces-2013-0047Open DOISearch in Google Scholar

[6] Fiscus EL, Booker FL, Burkey KO. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ. 2005;28:997-1011. DOI: 10.1111/j.1365-3040.2005.01349.x.10.1111/j.1365-3040.2005.01349.xOpen DOISearch in Google Scholar

[7] Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell 1995; 7:1085-1097. DOI: 10.1105/tpc.7.7.1085.10.1105/tpc.7.7.108516091512242399Open DOISearch in Google Scholar

[8] Betzelberger A. Current and future consequences of tropospheric ozone on soybean biochemistry, physiology and yield. [PhD thesis]. Urbana-Champaign: University of Illinois; 2013. http://hdl.handle.net/2142/42288.Search in Google Scholar

[9] Saviranta NM, Julkunen-Tiitto R, Oksanen E, Karjalainen RO. Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Environ Pollut. 2010;158:440-446. DOI: 10.1016/j.envpol.2009.08.029.10.1016/j.envpol.2009.08.02919766367Open DOISearch in Google Scholar

[10] Didyk NP, Blum OB. Natural antioxidants of plant origin against ozone damage of sensitive crops. Acta Physiol Plant. 2011;33:25-34. DOI: 10.1007/s11738-010-0527-5.10.1007/s11738-010-0527-5Search in Google Scholar

[11] Betz GA, Knappe C, Lapierre C, Olbrich M, Welzl G, Langebartels C, et al. Ozone affects shikimate pathway transcripts and monomeric lignin composition in European beech (Fagus sylvatica L.). Eur J For Res. 2009;128:109-116. DOI: 10.1007/s10342-008-0216-8.10.1007/s10342-008-0216-8Open DOISearch in Google Scholar

[12] Richet N, Tozo K, Afif D, Banvoy J, Legay S, Dizengremel P, et al. The response to daylight or continuous ozone of phenylpropanoid and lignin biosynthesis pathways in poplar differs between leaves and wood. Planta 2012;236:727-737. DOI: 10.1007/s00425-012-1644-8.10.1007/s00425-012-1644-8Open DOISearch in Google Scholar

[13] Saleem A, Loponen J, Pihlaja K, Oksanen E. Effects of long-term open-field ozone exposure on leaf phenolics of European silver birch (Betula pendula Roth). J Chem Ecol. 2001;27:1049-1062. DOI: 10.1023/A:1010351406931.10.1023/A:1010351406931Open DOISearch in Google Scholar

[14] Peltonen PA, Vapaavuori E, Julkunen-Tiitto R. Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biol. 2005;11:1305-1324. DOI: 10.1111/j.1365-2486.2005.00979.x.10.1111/j.1365-2486.2005.00979.xOpen DOISearch in Google Scholar

[15] Singh AA, Agrawal SB, Shahi JP, Agrawal M. Investigating the response of tropical maize (Zea mays L.) cultivars against elevated levels of O3 at two developmental stages. Ecotoxicology 2014;23:1447-1463. DOI: 10.1007/s10646-014-1287-6.10.1007/s10646-014-1287-6Open DOISearch in Google Scholar

[16] He X, Huang W, Chen W, Dong T, Liu C, Chen Z, et al. Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation. J Environ Sci. 2009;21:199-203. DOI: 10.1016/S1001-0742(08)62251-2.10.1016/S1001-0742(08)62251-2Open DOISearch in Google Scholar

[17] Haikio E, Freiwald V, Julkunen-Tiitto R, Beuker E, Holopainen T, Oksanen E. Differences in leaf characteristics between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula × Populus tremuloides) clones. Tree Physiol. 2009;29:53-66. DOI: 10.1093/treephys/tpn005.10.1093/treephys/tpn005Open DOISearch in Google Scholar

[18] Sarkar A, Singh AA, Agrawal SB, Ahmad A, Rai SP. Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotox Environ Safe. 2015;115:101-111. DOI: 10.1016/j.ecoenv.2015.02.010.10.1016/j.ecoenv.2015.02.010Open DOISearch in Google Scholar

[19] Chaudhary N, Agrawal SB. The role of elevated ozone on growth, yield and seed quality amongst six cultivars of mung bean. Ecotox Environ Safe. 2015;111:286-294. DOI: 10.1016/j.ecoenv.2014.09.018.10.1016/j.ecoenv.2014.09.018Open DOISearch in Google Scholar

[20] Saitanis CJ, Riga-Karandinos AN, Karandinos MG. Effect of ozone on chlorophyll and quantum yield of tobacco (Nicotiana tabacum L.). Chemosphere. 2001;42:945-953. DOI: 10.1016/S0045-6535(00)00158-2.10.1016/S0045-6535(00)00158-2Open DOISearch in Google Scholar

[21] Morgan PB, Ainsworth EA, Long SP. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ. 2003;26:1317-1328. DOI: 10.1046/j.0016-8025.2003.01056.x.10.1046/j.0016-8025.2003.01056.xOpen DOISearch in Google Scholar

[22] Dėdelienė K, Juknys R. Response of several spring barley cultivars to UV-B radiation and ozone treatment. Environ Res Engin Manage. 2010;4:13-19.Search in Google Scholar

[23] Goumenaki E, Taybi T, Borland A, Barnes J. Mechanisms underlying the impacts of ozone on photosynthetic performance. Environ Exp Bot. 2010;69:259-266. DOI: 10.1016/j.envexpbot.2010.04.011.10.1016/j.envexpbot.2010.04.011Open DOISearch in Google Scholar

[24] Caregnato FF, Bortolin RC, Junior AMD, Moreira JCF. Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseouls vulgaris L. varieties. Chemosphere 2013;93:320-330. http://dx.doi.org/10.1071/FP11192.10.1071/FP11192Open DOISearch in Google Scholar

[25] Anderson PD, Palmer B, Houpis JLJ, Smith MK, Pushnik JC. Chloroplastic responses of ponderosa pine (Pinus ponderosa) seedlings to ozone exposure. Environ Int. 2003;29:407-413. DOI: 10.1016/S0160-4120(02)00177-0.10.1016/S0160-4120(02)00177-0Open DOISearch in Google Scholar

[26] Horbowicz M, Wiczkowski W, Koczkodaj D, Saniewski M. Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol Hungar. 2011;62:265-278. DOI: 10.1556/ABiol.62.2011.3.6.10.1556/ABiol.62.2011.3.6Open DOISearch in Google Scholar

[27] Wiczkowski W, Szawara-Nowak D, Dębski H, Mitrus J, Horbowicz M. Comparison of flavonoids profile in sprouts of common buckwheat cultivars and wild tartary buckwheat. Int J Food Sci Tech. 2014;49:1977-1984. DOI:10.1111/ijfs.12484.10.1111/ijfs.12484Open DOISearch in Google Scholar

[28] Horbowicz M, Grzesiuk A, Dębski H, Koczkodaj D, Saniewski M. Methyl jasmonate inhibits anthocyanins synthesis in seedlings of common buckwheat (Fagopyrum esculentum Moench). Acta Biol Cracow Bot. 2008;50:71-78.Search in Google Scholar

[29] Horbowicz M, Dębski H, Wiczkowski W, Szawara-Nowak J, Koczkodaj D, Mitrus J et al. The impact of short-term exposure to Pb and Cd on flavonoids composition and seedlings growth of common buckwheat cultivars. Pol J Environ Stud. 2013;22:1723-1730.Search in Google Scholar

[30] Lichtenthaler HK, Welburn AR. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem Soc Trans. 1983;603:591-592.Search in Google Scholar

[31] Barańska K, Klech T. Roczna ocena jakości powietrza w województwie mazowieckim. Raport za rok 2013. 2014. http://wios.warszawa.pl/pl/publikacje-wios/publikacje/962,Roczna-Ocena-Jakosci-Powietrza-w-wojewodztwie-mazowieckim-Raport-za-rok-2013.html.Search in Google Scholar

[32] Ohnishi O. Analyses of genetic variants in common buckwheat Fagopyrum esculentum Moench: a review. Fagopyrum. 1990;10:12-22. DOI: 10.1266/jjg.62.397.10.1266/jjg.62.397Open DOISearch in Google Scholar

[33] Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med. 1996;20:933-956. DOI: 10.1016/0891-5849(95)02227-9.10.1016/0891-5849(95)02227-9Open DOISearch in Google Scholar

[34] Booker FL, Miller JE. Phenylpropanoid metabolism and phenolic composition of soybean (Glycine max) leaves following exposure to ozone. J Exp Bot. 1998;49:1191-1202. DOI: 10.1093/jxb/49.324.1191.10.1093/jxb/49.324.1191Open DOISearch in Google Scholar

[35] Mikkelsen TN, Dodell B, Lutz C. Changes in pigment concentration and composition in Norway spruce induced by long-term exposure to low levels of ozone. Environ Pollut. 1995;87:197-205. DOI: 10.1016/0269-7491(94)P2607-B.10.1016/0269-7491(94)P2607-Open DOISearch in Google Scholar

[36] Kollner B, Krause GHM. Changes in carbohydrates, leaf pigments and yield in potatoes induced by different ozone exposure regimes. Agric Ecosyst Environ. 2000;78:149-158. DOI: 10.1016/S0167-8809(99)00118-8.10.1016/S0167-8809(99)00118-8Open DOISearch in Google Scholar

[37] Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett. 2009;483:262-267. DOI: 10.1016/j.cplett.2009.10.085.10.1016/j.cplett.2009.10.085Open DOISearch in Google Scholar

[38] Cazzonelli CI. Carotenoids in nature: insights from plants and beyond. Funct Plant Biol. 2011;38:833-847. DOI: 10.1071/FP11192.10.1071/FP1119232480941Open DOISearch in Google Scholar

[39] Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biol. 2009;15:396-424. DOI: 10.1111/j.1365-2486.2008.01774.x.10.1111/j.1365-2486.2008.01774.xOpen DOISearch in Google Scholar

eISSN:
1898-6196
Language:
English