Open access


Heavy metals and radioactive compounds are potentially hazardous substances for plants, animals and humans in the Arctic. A good knowledge of the spatial variation of these substances in soil and primary producers, and their sources, is therefore essential. In the samples of lichen Thamnolia vermicularis, Salix polaris and Cassiope tetragona, and the soil samples collected in 2014 in Svalbard near Longyearbyen, the concentrations of the following heavy metals were determined: Mn, Ni, Cu, Zn, Cd, Pb and Hg, as well as the activity concentrations of the following: K-40, Cs-137, Pb-210, Pb-212, Bi-212, Bi-214, Pb-214, Ac-228, Th-231 and U-235 in the soil samples. The differences in the concentrations of the analytes accumulated in the different plant species and soil were studied using statistical methods. Sea aerosol was indicated as the source of Pb, Hg, Cs-137, Pb-210 and Th-231 in the studied area. A relatively high concentration of nickel was determined in the biota samples collected near Longyearbyen, compared to other areas of Svalbard. It was supposed that nickel may be released into the atmosphere as a consequence of the local coal mining around Longyearbyen.

[1] Paatero J, Vira J, Siitari-Kauppi M, Hatakka J, Holmén K, Viisanen Y. Airborne fission products in the high Arctic after the Fukushima nuclear accident. J Environ Radioactiv. 2012;114:41-47. DOI: 10.1016/j.jenvrad.2011.12.027.

[2] Bokhorst S, Tømmervik H, Callaghan TV, Phoenix GK, Bjerke JW. Vegetation recovery following extreme winter warming events in the sub-Arctic estimated using NDVI from remote sensing and handheld passive proximal sensors. Environ Experimental Bot. 2012;81:18-25. DOI: 10.1016/j.envexpbot.2012.02.011.

[3] Łokas E, Bartmiński P, Wachniew P, Mietelski JW, Kawiak T, Środoń J. Sources and pathways of artificial radionuclides to soils at a High Arctic site. Environ Sci Pollut Res. 2014;21:12479-12493. DOI: 10.1007/s11356-014-3163-6.

[4] Singh SM, Sharma J, Gawas-Sakhalkar P, Upadhyay AK, Naik S, Pedneker SM, et al. Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite. Environ Monit Assess. 2013;185:1367-1376. DOI: 10.1007/s10661-012-2638-5.

[5] Zhang P, Ge L, Gao H, Yao T, Fang X, Zhou Ch, et al. Distribution and transfer pattern of polychlorinated Biphenyls (PCBs) among the selected environmental media of Ny-Ålesund, the Arctic: As a case study. Marine Pollut Bullet. 2014;89:267-275. DOI: 10.1016/j.marpolbul.2014.09.050.

[6] Samecka-Cymerman A, Wojtuń B, Kolon K, Kempers AJ. Sanionia uncinata (Hedw.) loeske as bioindicator of metal pollution in polar regions. Polar Biol. 2011;34:381-388. DOI: 10.1007/s00300-010-0893-x.

[7] Wojtuń, B, Samecka-Cymerman A, Kolon, K, Kempers AJ, Skrzypek G. Metals in some dominant vascular plants, mosses, lichens, algae, and the biological soil crust in various types of terrestrial tundra, SW Spitsbergen, Norway. Polar Biol. 2013;36:1799-1809. DOI: 10.1007/s00300-013-1399-0.

[8] Dietz R, Riget F, Hobson KA, Heide-Jørgensen MP, Møller P, Cleemann M, et al. Regional and inter annual patterns of heavy metals, organochlorines and stable isotopes in narwhals (Monodon monoceros) from West Greenland. Sci Total Environ. 2004;331:83-105. DOI: 10.1016/j.scitotenv.2004.03.041.

[9] Sagerup K, Savinov V, Savinova T, Kuklin V, Muir DCG, Gabrielsen GW. Persistent organic pollutants, heavy metals and parasites in the glaucous gull (Larus hyperboreus) on Spitsbergen. Environ Pollut. 2009;157:2282-2290. DOI: 10.1016/j.envpol.2009.03.031.

[10] Simões JC, Zagorodnov VS. The record of anthropogenic pollution in snow and ice in Svalbard, Norway. Atmospheric Environ. 2001;35:403-413. DOI: 10.1016/S1352-2310(00)00122-9.

[11] Drevnick PE, Yang H, Lamborg CH, Rose NL. Net atmospheric mercury deposition to Svalbard: Estimates from lacustrine sediments. Atmospheric Environ. 2012;59:509-513. DOI: 10.1016/j.atmosenv.2012.05.048.

[12] Zaborska A, Mietelski JW, Carroll JL, Papucci C, Pempkowiak J. Sources and distributions of 137Cs, 238Pu, 239,240Pu radionuclides in the north-western Barents Sea. J Environ Radioactiv. 2010;101:323-331. DOI: 10.1016/j.jenvrad.2010.01.006.

[13] Kozak K, Polkowska Ż, Ruman M, Kozioł K, Namieśnik J. Analytical studies on the environmental state of the Svalbard Archipelago provide a critical source of information about anthropogenic global impact. Trends Analyt Chem. 2013;50:107-126. DOI: 10.1016/j.trac.2013.04.016.

[14] AMAP Assessment 2006: Acidifying Pollutants, Arctic Haze, and Acidification in the Arctic. Oslo: 2006.

[15] AMAP Assessment 2002: Radioactivity in the Arctic. Oslo: 2004.

[16] AMAP Assessment 2002: Heavy Metals in the Arctic. Oslo: 2005.

[17] Aas W, Platt S, Solberg S, Yttri KE. Monitoring of long-range transported air pollutants in Norway. Annual Report 2014. Miljødirektoratet rapport, M-367/2015 (20/2015). Kjelle: NILU Norsk institutt for luftforsknin; 2015.

[18] Gabrielsen GW, Evenset A, Frantzen S, Gwynn J, Hallanger IG., Kallenborn R, et al. MOSJ statusrapport 2011 Miljøgifter. Norsk Polarinstitutt Rapportserie 137. Tromsø: Norwegian Polar Institute; 2011.

[19] Holm EB, Brandvik PJ, Steinnes E. Pollution in acid mine drainage from mine tailings in Svalbard, Norwegian Arctic. J Physique. 2003;IV(107):625-628. DOI: 10.1051/jp4:20030381.

[20] Elberling B, Søndergaard J, Jensen LA, Schmidt LB, Hansen BU, Asmund G, et al. Arctic vegetation damage by winter-generated coal mining pollution released upon thawing. Environ Sci Technol. 2007;41(7):2407-2413. DOI: 10.1021/es061457x.

[21] Askaer L, Schmidt LB, Elberling B, Asmund G., Jónsdóttir IS. Environmental impact on an Arctic soil-plant system resulting from metals released from coal mine waste in Svalbard (78° N). Water, Air, Soil Pollut. 2008;195:99-114. DOI: 10.1007/s11270-008-9730-z.

[22] Headley AD. Heavy metals in peat from the high Arctic. Sci Total Environ. 1996;177:105-111. DOI: 10.1016/0048-9697(95)04867-7.

[23] Johansen BF, Prestvold K, Overrein Ø. The Cruise Handbook for Svalbard. Tromsø: Norwegian Polar Institute; 2011.

[24] Kłos A, Bochenek Z, Bjerke JW, Zagajewski B, Ziółkowski D, Ziembik Z, et al. The use of mosses in biomonitoring of the selected areas in Poland and Spitsbergen in the years from 1975 to 2014. Ecol Chm Eng S. 2015;22(2):201-218. DOI: 10.1515/eces-2015-0011.

[25] Aitchison J. The Statistical Analysis of Compositional Data. Caldwell. New Yersey: The Blackburn Press; 2003.

[26] Aitchison J. A Concise Guide to Compositional Data Analysis. 2010. Accessed March 20th 2016.

[27] Pawlowsky-Glahn V, Buccianti A, editors. Compositional Data Analysis. Theory and Applications. Chichester, UK: John Wiley & Sons, Ltd.; 2011.

[28] Filzmoser P, Hron K. Correlation analysis for compositional data. Mathemat Geoscien. 2008;41(8):905-919. DOI: 10.1007/s11004-008-9196-y.

[29] Ziembik Z, Dołhańczuk-Śródka A. Application of compositional data analysis in biomonitoring of atmospheric dust precipitation. In: Proceedings of the 6th International Workshop on Compositional Data Analysis: Girona, 1-5 de juny de 2015. Girona: Universitat de Girona. Accessed January 20th, 2016.

[30] R Development Core Team. 2015. R: A language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. Accessed March 1st, 2016.

[31] Kaufman L, Rousseeuw PJ. Finding Groups in Data. An Introduction to Cluster Analysis. New York: Wiley; 2005.

[32] Maechler M, Rousseeuw PA, Struyf MH, Hornik K. Cluster: Cluster Analysis Basics and Extensions. R package version 1.15.3”.; 2014.

[33] van den Boogaart KG, Tolosana R, Bren M. Compositions: Compositional Data Analysis. R package version 1.40-1. Accessed March 10th, 2016.

[34] van den Boogaart KG, Tolosana-Delgado R. Analyzing Compositional Data with R. Heidelberg, New York, Dodrecht, London: Springer; 2013.

[35] Grodzińska K, Godzik B. Heavy metals and sulphur in mosses from Southern Spitsbergen. Polar Res. 1991;9:133-140. DOI: 10.1111/j.1751-8369.1991.tb00609.x.

[36] Jóźwik Z. Heavy metals in tundra plants of Bellsund area, Spitsbergen. Polish Polar Res. 1990;11:401-409.

[37] Jóźwik Z. Heavy metals in tundra plants of the Bellsund in West Spitsbergen, investigated in the years 1987-1995. Polish Polar Res. 2000;21:43-54.

[38] Drbal K, Elster J, Komarek J. Heavy metals in water, ice and biological material from Spitsbergen, Svalbard. Polar Res. 1992;11:99-101. DOI: 10.1111/j.1751-8369.1992.tb00416.x.

[39] Gulińska J, Rachlewicz G, Szczuciński W, Barałkiewicz D, Kózka M, Bulska E, et al. Soil contamination in high Arctic areas of human impact, central Spitsbergen, Svalbard. Polish J Environ Stud. 2003;12:701-707.

[40] Choy ES, Gauthier M, Mallory ML, Smol JP, Douglas MSV, Lean D, et al. An isotopic investigation of mercury accumulation in terrestrial food webs adjacent to an Arctic seabird colony. Sci Total Environ. 2010;8:1858-1867. DOI: 10.1016/j.scitotenv.2010.01.014.

[41] Tømmervik H, Høgda KA, Solheim I. Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Remote Sens Environ. 2003;85:370-388. DOI: 10.1016/S0034-4257(03)00014-2.

[42] Bjerke JW, Tømmervik H, Finne TE, Jensen H, Lukina N, Bakkestuen V. Epiphytic lichen distribution and plant leaf heavy metal concentrations in Russian-Norwegian boreal forests influenced by air pollution from nickel-copper smelters. Boreal Environ Res. 2006;11:441-450.

[43] Äyräs M, Niskavaara H, Bogatyrev I, Chekushin V, Pavlov V, de Caritat P, et al. Regional patterns of heavy metals (Co, Cr, Cu, Fe, Ni, Pb, V and Zn) and sulphur in terrestrial moss samples as indication of airborne pollution in a 188,000 km2 area in northern Finland, Norway and Russia. J Geochem Explorat. 1997;58:269-281. DOI: 10.1016/S0375-6742(96)00077-5.

[44] Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J Propulsion Power. 2006;22(2):361-374. DOI: 10.2514/1.18239.

[45] Sharpe HJ. Effect of microstructure on high-temperature mechanical behavior of nickel-base superalloys for turbine disc applications. Dissertation. Atlanta, USA: Georgia Institute of Technology; 2007. DOI: 10.4028/

[46] Kim KH, Shon ZH, Mauulida PT, Song SK. Long-term monitoring of airborne nickel (Ni) pollution in association with some potential source processes in the urban environment. Chemosphere. 2014;111:312-319. DOI: 10.1016/j.chemosphere.2014.03.138.

[47] Dowdall M, Gerland S, Lind B. Gamma-emitting natural and anthropogenic radionuclides in the terrestrial environment of Kongsfjord, Svalbard. Sci Total Environ. 2003;305:229-240. DOI: 10.1016/S0048-9697(02)00478-3.

[48] Dowdall M, Gwynn JP, Moran C, Davids C, O'Dea J, Lind B. Organic soil as a radionuclide sink in a High Arctic environment. J Radioanal Nuclear Chem. 2005;266(2):217 - 223. DOI: 10.1007/s10967-005-0895-2.

[49] Dowdall M, Vicat K, Frearson I, Gerland S, Lind B, Shaw G. Assessment of the radiological impacts of historical coal mining operations on the environment of Ny-Ålesund, Svalbard. J Environ Radioactiv. 2004;71:101-114. DOI: 10.1016/S0265-931X(03)00144-9.

[50] Gwynn JP, Dowdall M, Davids C, Selnæs ØG, Lind B. The radiological environment of Svalbard. Polar Res. 2004;23:167-180. DOI: 10.1111/j.1751-8369.2004.tb00006.x.

[51] Kłos A, Rajfur M, Wacławek M, Wacławek W. 137Cs transfer from local particulate matter to lichens and mosses. Nukleonika. 2009;54(4):297-303.

[52] Gwynn JP, Brown JE, Kovacs KM, Lydersen C. The derivation of radionuclide transfer parameters for and dose-rates to an adult ringed seal (Phoca hispida) in an Arctic environment. J Environ Radioactiv. 2006;90:197-209. DOI: 10.1016/j.jenvrad.2006.07.002.

[53] United Nations. 2008. UNSCEAR 2008 Report Vol. I. Sources of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2008 Report to the General Assembly, with scientific annexes. Annex B. Accessed March 20th, 2016.

[54] United Nations. 2011. Sources and effects of ionizing radiation. UNSCEAR 2008. VOLUME II. Scientific Annexes C, D and E. Accessed March 15th, 2016.

[55] Aleksakhin RM, Sanzharova NI, Fesenko SV. Radioecology and the accident at the Chernobyl nuclear power plant. Atomic Energy. 2006;100(4):257-63. DOI: 10.1007/s10512-006-0080-x.

[56] Wróbel Ł, Dołhańczuk-Śródka A, Kłos A, Ziembik Z. The activity concentration of post-Chernobyl Cs-137 in the area of the Opole Anomaly (southern Poland). Environ Monit Assess. 2015;187(1):4084. DOI: 10.1007/s10661-014-4084-z.

[57] Dołhańczuk-Śródka A, Ziembik Z, Wacławek M, Hyšplerová L. Transfer of cesium-137 from forest soil to moss Pleurozium schreberi. Ecol Chem Eng S. 2011;18(4):509-16.

[58] Ziembik Z, Dołhańczuk-Śródka A, Majcherczyk T, Wacławek M. Illustration of constrained composition statistical methods in the interpretation of radionuclide concentrations in the moss Pleurozium schreberi. J Environ Radioactiv. 2013;117:13-18. DOI: 10.1016/j.jenvrad.2012.04.002.

[59] Steinnes E, Frontasyeva MV. Marine gradients of halogens in soil studied by epithermal neutron activation analysis. J Radioanal Nuclear Chem. 2002;253(1):173-177. DOI: 10.1023/A:1015849525392.

[60] Frontasyeva MV, Steinnes E. Marine gradients of halogens in moss studies by epithermal neutron activation analysis. J Radioanal Nuclear Chem. 2004;261(1):101-106. DOI: 10.1023/B:JRNC.0000030941.78117.77.

Ecological Chemistry and Engineering S

The Journal of Society of Ecological Chemistry and Engineering

Journal Information

5-year IMPACT FACTOR: 0.815

CiteScore 2017: 0.79

SCImago Journal Rank (SJR) 2017: 0.227
Source Normalized Impact per Paper (SNIP) 2017: 0.535

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 183 183 30
PDF Downloads 76 76 16