Cite

[1] Paatero J, Vira J, Siitari-Kauppi M, Hatakka J, Holmén K, Viisanen Y. Airborne fission products in the high Arctic after the Fukushima nuclear accident. J Environ Radioactiv. 2012;114:41-47. DOI: 10.1016/j.jenvrad.2011.12.027.10.1016/j.jenvrad.2011.12.027Search in Google Scholar

[2] Bokhorst S, Tømmervik H, Callaghan TV, Phoenix GK, Bjerke JW. Vegetation recovery following extreme winter warming events in the sub-Arctic estimated using NDVI from remote sensing and handheld passive proximal sensors. Environ Experimental Bot. 2012;81:18-25. DOI: 10.1016/j.envexpbot.2012.02.011.10.1016/j.envexpbot.2012.02.011Search in Google Scholar

[3] Łokas E, Bartmiński P, Wachniew P, Mietelski JW, Kawiak T, Środoń J. Sources and pathways of artificial radionuclides to soils at a High Arctic site. Environ Sci Pollut Res. 2014;21:12479-12493. DOI: 10.1007/s11356-014-3163-6.10.1007/s11356-014-3163-6Search in Google Scholar

[4] Singh SM, Sharma J, Gawas-Sakhalkar P, Upadhyay AK, Naik S, Pedneker SM, et al. Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite. Environ Monit Assess. 2013;185:1367-1376. DOI: 10.1007/s10661-012-2638-5.10.1007/s10661-012-2638-5Search in Google Scholar

[5] Zhang P, Ge L, Gao H, Yao T, Fang X, Zhou Ch, et al. Distribution and transfer pattern of polychlorinated Biphenyls (PCBs) among the selected environmental media of Ny-Ålesund, the Arctic: As a case study. Marine Pollut Bullet. 2014;89:267-275. DOI: 10.1016/j.marpolbul.2014.09.050.10.1016/j.marpolbul.2014.09.050Search in Google Scholar

[6] Samecka-Cymerman A, Wojtuń B, Kolon K, Kempers AJ. Sanionia uncinata (Hedw.) loeske as bioindicator of metal pollution in polar regions. Polar Biol. 2011;34:381-388. DOI: 10.1007/s00300-010-0893-x.10.1007/s00300-010-0893-xSearch in Google Scholar

[7] Wojtuń, B, Samecka-Cymerman A, Kolon, K, Kempers AJ, Skrzypek G. Metals in some dominant vascular plants, mosses, lichens, algae, and the biological soil crust in various types of terrestrial tundra, SW Spitsbergen, Norway. Polar Biol. 2013;36:1799-1809. DOI: 10.1007/s00300-013-1399-0.10.1007/s00300-013-1399-0Search in Google Scholar

[8] Dietz R, Riget F, Hobson KA, Heide-Jørgensen MP, Møller P, Cleemann M, et al. Regional and inter annual patterns of heavy metals, organochlorines and stable isotopes in narwhals (Monodon monoceros) from West Greenland. Sci Total Environ. 2004;331:83-105. DOI: 10.1016/j.scitotenv.2004.03.041.10.1016/j.scitotenv.2004.03.041Search in Google Scholar

[9] Sagerup K, Savinov V, Savinova T, Kuklin V, Muir DCG, Gabrielsen GW. Persistent organic pollutants, heavy metals and parasites in the glaucous gull (Larus hyperboreus) on Spitsbergen. Environ Pollut. 2009;157:2282-2290. DOI: 10.1016/j.envpol.2009.03.031.10.1016/j.envpol.2009.03.031Search in Google Scholar

[10] Simões JC, Zagorodnov VS. The record of anthropogenic pollution in snow and ice in Svalbard, Norway. Atmospheric Environ. 2001;35:403-413. DOI: 10.1016/S1352-2310(00)00122-9.10.1016/S1352-2310(00)00122-9Search in Google Scholar

[11] Drevnick PE, Yang H, Lamborg CH, Rose NL. Net atmospheric mercury deposition to Svalbard: Estimates from lacustrine sediments. Atmospheric Environ. 2012;59:509-513. DOI: 10.1016/j.atmosenv.2012.05.048.10.1016/j.atmosenv.2012.05.048Search in Google Scholar

[12] Zaborska A, Mietelski JW, Carroll JL, Papucci C, Pempkowiak J. Sources and distributions of 137Cs, 238Pu, 239,240Pu radionuclides in the north-western Barents Sea. J Environ Radioactiv. 2010;101:323-331. DOI: 10.1016/j.jenvrad.2010.01.006.10.1016/j.jenvrad.2010.01.006Search in Google Scholar

[13] Kozak K, Polkowska Ż, Ruman M, Kozioł K, Namieśnik J. Analytical studies on the environmental state of the Svalbard Archipelago provide a critical source of information about anthropogenic global impact. Trends Analyt Chem. 2013;50:107-126. DOI: 10.1016/j.trac.2013.04.016.10.1016/j.trac.2013.04.016Search in Google Scholar

[14] AMAP Assessment 2006: Acidifying Pollutants, Arctic Haze, and Acidification in the Arctic. Oslo: 2006. https://www.amap.no/documents/download/1162.Search in Google Scholar

[15] AMAP Assessment 2002: Radioactivity in the Arctic. Oslo: 2004. https://www.amap.no/documents/download/1160.Search in Google Scholar

[16] AMAP Assessment 2002: Heavy Metals in the Arctic. Oslo: 2005. https://www.amap.no/documents/download/1161.Search in Google Scholar

[17] Aas W, Platt S, Solberg S, Yttri KE. Monitoring of long-range transported air pollutants in Norway. Annual Report 2014. Miljødirektoratet rapport, M-367/2015 (20/2015). Kjelle: NILU Norsk institutt for luftforsknin; 2015. https://brage.bibsys.no/xmlui/bitstream/handle/11250/2383289/20-2015-WAA_MD_LRTAP.pdf?sequence=3&isAllowed=y.Search in Google Scholar

[18] Gabrielsen GW, Evenset A, Frantzen S, Gwynn J, Hallanger IG., Kallenborn R, et al. MOSJ statusrapport 2011 Miljøgifter. Norsk Polarinstitutt Rapportserie 137. Tromsø: Norwegian Polar Institute; 2011. https://brage.bibsys.no/xmlui/bitstream/handle/11250/173389/Brage1.pdf?sequence=3.Search in Google Scholar

[19] Holm EB, Brandvik PJ, Steinnes E. Pollution in acid mine drainage from mine tailings in Svalbard, Norwegian Arctic. J Physique. 2003;IV(107):625-628. DOI: 10.1051/jp4:20030381.10.1051/jp4:20030381Search in Google Scholar

[20] Elberling B, Søndergaard J, Jensen LA, Schmidt LB, Hansen BU, Asmund G, et al. Arctic vegetation damage by winter-generated coal mining pollution released upon thawing. Environ Sci Technol. 2007;41(7):2407-2413. DOI: 10.1021/es061457x.10.1021/es061457xSearch in Google Scholar

[21] Askaer L, Schmidt LB, Elberling B, Asmund G., Jónsdóttir IS. Environmental impact on an Arctic soil-plant system resulting from metals released from coal mine waste in Svalbard (78° N). Water, Air, Soil Pollut. 2008;195:99-114. DOI: 10.1007/s11270-008-9730-z.10.1007/s11270-008-9730-zSearch in Google Scholar

[22] Headley AD. Heavy metals in peat from the high Arctic. Sci Total Environ. 1996;177:105-111. DOI: 10.1016/0048-9697(95)04867-7.10.1016/0048-9697(95)04867-7Search in Google Scholar

[23] Johansen BF, Prestvold K, Overrein Ø. The Cruise Handbook for Svalbard. Tromsø: Norwegian Polar Institute; 2011. http://cruise-handbook.npolar.no/en/nordvesthjornet/bruceneset.html.Search in Google Scholar

[24] Kłos A, Bochenek Z, Bjerke JW, Zagajewski B, Ziółkowski D, Ziembik Z, et al. The use of mosses in biomonitoring of the selected areas in Poland and Spitsbergen in the years from 1975 to 2014. Ecol Chm Eng S. 2015;22(2):201-218. DOI: 10.1515/eces-2015-0011.10.1515/eces-2015-0011Search in Google Scholar

[25] Aitchison J. The Statistical Analysis of Compositional Data. Caldwell. New Yersey: The Blackburn Press; 2003.Search in Google Scholar

[26] Aitchison J. A Concise Guide to Compositional Data Analysis. 2010. http://www.leg.ufpr.br/lib/exe/fetch.php/pessoais:abtmartins:a_concise_guide_to_compositional_data_analysis.pdf. Accessed March 20th 2016.Search in Google Scholar

[27] Pawlowsky-Glahn V, Buccianti A, editors. Compositional Data Analysis. Theory and Applications. Chichester, UK: John Wiley & Sons, Ltd.; 2011.10.1002/9781119976462Search in Google Scholar

[28] Filzmoser P, Hron K. Correlation analysis for compositional data. Mathemat Geoscien. 2008;41(8):905-919. DOI: 10.1007/s11004-008-9196-y.10.1007/s11004-008-9196-ySearch in Google Scholar

[29] Ziembik Z, Dołhańczuk-Śródka A. Application of compositional data analysis in biomonitoring of atmospheric dust precipitation. In: Proceedings of the 6th International Workshop on Compositional Data Analysis: Girona, 1-5 de juny de 2015. Girona: Universitat de Girona. http://dugi-doc.udg.edu/bitstream/handle/10256/10558/Proceedings-Book-LIGHT.pdf?sequence=1. Accessed January 20th, 2016.Search in Google Scholar

[30] R Development Core Team. 2015. R: A language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed March 1st, 2016.Search in Google Scholar

[31] Kaufman L, Rousseeuw PJ. Finding Groups in Data. An Introduction to Cluster Analysis. New York: Wiley; 2005.Search in Google Scholar

[32] Maechler M, Rousseeuw PA, Struyf MH, Hornik K. Cluster: Cluster Analysis Basics and Extensions. R package version 1.15.3”.; 2014. https://cran.r-project.org/web/packages/cluster/index.html.Search in Google Scholar

[33] van den Boogaart KG, Tolosana R, Bren M. Compositions: Compositional Data Analysis. R package version 1.40-1. http://CRAN.R-project.org/package=compositions. Accessed March 10th, 2016.Search in Google Scholar

[34] van den Boogaart KG, Tolosana-Delgado R. Analyzing Compositional Data with R. Heidelberg, New York, Dodrecht, London: Springer; 2013.10.1007/978-3-642-36809-7Search in Google Scholar

[35] Grodzińska K, Godzik B. Heavy metals and sulphur in mosses from Southern Spitsbergen. Polar Res. 1991;9:133-140. DOI: 10.1111/j.1751-8369.1991.tb00609.x.10.1111/j.1751-8369.1991.tb00609.xSearch in Google Scholar

[36] Jóźwik Z. Heavy metals in tundra plants of Bellsund area, Spitsbergen. Polish Polar Res. 1990;11:401-409. http://polish.polar.pan.pl/ppr11/1990-3-4_401-409.pdf.Search in Google Scholar

[37] Jóźwik Z. Heavy metals in tundra plants of the Bellsund in West Spitsbergen, investigated in the years 1987-1995. Polish Polar Res. 2000;21:43-54. http://www.polish.polar.pan.pl/ppr21/2000-1_043-054.pdf.Search in Google Scholar

[38] Drbal K, Elster J, Komarek J. Heavy metals in water, ice and biological material from Spitsbergen, Svalbard. Polar Res. 1992;11:99-101. DOI: 10.1111/j.1751-8369.1992.tb00416.x.10.1111/j.1751-8369.1992.tb00416.xSearch in Google Scholar

[39] Gulińska J, Rachlewicz G, Szczuciński W, Barałkiewicz D, Kózka M, Bulska E, et al. Soil contamination in high Arctic areas of human impact, central Spitsbergen, Svalbard. Polish J Environ Stud. 2003;12:701-707. http://www.pjoes.com/pdf/12.6/701-707.pdf.Search in Google Scholar

[40] Choy ES, Gauthier M, Mallory ML, Smol JP, Douglas MSV, Lean D, et al. An isotopic investigation of mercury accumulation in terrestrial food webs adjacent to an Arctic seabird colony. Sci Total Environ. 2010;8:1858-1867. DOI: 10.1016/j.scitotenv.2010.01.014.10.1016/j.scitotenv.2010.01.014Search in Google Scholar

[41] Tømmervik H, Høgda KA, Solheim I. Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Remote Sens Environ. 2003;85:370-388. DOI: 10.1016/S0034-4257(03)00014-2.10.1016/S0034-4257(03)00014-2Search in Google Scholar

[42] Bjerke JW, Tømmervik H, Finne TE, Jensen H, Lukina N, Bakkestuen V. Epiphytic lichen distribution and plant leaf heavy metal concentrations in Russian-Norwegian boreal forests influenced by air pollution from nickel-copper smelters. Boreal Environ Res. 2006;11:441-450. http://www.borenv.net/BER/pdfs/ber11/ber11-441.pdf.Search in Google Scholar

[43] Äyräs M, Niskavaara H, Bogatyrev I, Chekushin V, Pavlov V, de Caritat P, et al. Regional patterns of heavy metals (Co, Cr, Cu, Fe, Ni, Pb, V and Zn) and sulphur in terrestrial moss samples as indication of airborne pollution in a 188,000 km2 area in northern Finland, Norway and Russia. J Geochem Explorat. 1997;58:269-281. DOI: 10.1016/S0375-6742(96)00077-5.10.1016/S0375-6742(96)00077-5Search in Google Scholar

[44] Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J Propulsion Power. 2006;22(2):361-374. DOI: 10.2514/1.18239.10.2514/1.18239Search in Google Scholar

[45] Sharpe HJ. Effect of microstructure on high-temperature mechanical behavior of nickel-base superalloys for turbine disc applications. Dissertation. Atlanta, USA: Georgia Institute of Technology; 2007. DOI: 10.4028/www.scientific.net/AMR.278.259.10.4028/www.scientific.net/AMR.278.259Search in Google Scholar

[46] Kim KH, Shon ZH, Mauulida PT, Song SK. Long-term monitoring of airborne nickel (Ni) pollution in association with some potential source processes in the urban environment. Chemosphere. 2014;111:312-319. DOI: 10.1016/j.chemosphere.2014.03.138.10.1016/j.chemosphere.2014.03.138Search in Google Scholar

[47] Dowdall M, Gerland S, Lind B. Gamma-emitting natural and anthropogenic radionuclides in the terrestrial environment of Kongsfjord, Svalbard. Sci Total Environ. 2003;305:229-240. DOI: 10.1016/S0048-9697(02)00478-3.10.1016/S0048-9697(02)00478-3Search in Google Scholar

[48] Dowdall M, Gwynn JP, Moran C, Davids C, O'Dea J, Lind B. Organic soil as a radionuclide sink in a High Arctic environment. J Radioanal Nuclear Chem. 2005;266(2):217 - 223. DOI: 10.1007/s10967-005-0895-2.10.1007/s10967-005-0895-2Search in Google Scholar

[49] Dowdall M, Vicat K, Frearson I, Gerland S, Lind B, Shaw G. Assessment of the radiological impacts of historical coal mining operations on the environment of Ny-Ålesund, Svalbard. J Environ Radioactiv. 2004;71:101-114. DOI: 10.1016/S0265-931X(03)00144-9.10.1016/S0265-931X(03)00144-9Search in Google Scholar

[50] Gwynn JP, Dowdall M, Davids C, Selnæs ØG, Lind B. The radiological environment of Svalbard. Polar Res. 2004;23:167-180. DOI: 10.1111/j.1751-8369.2004.tb00006.x.10.1111/j.1751-8369.2004.tb00006.xSearch in Google Scholar

[51] Kłos A, Rajfur M, Wacławek M, Wacławek W. 137Cs transfer from local particulate matter to lichens and mosses. Nukleonika. 2009;54(4):297-303. http://www.nukleonika.pl/www/back/full/vol54_2009/v54n4p297f.pdf.Search in Google Scholar

[52] Gwynn JP, Brown JE, Kovacs KM, Lydersen C. The derivation of radionuclide transfer parameters for and dose-rates to an adult ringed seal (Phoca hispida) in an Arctic environment. J Environ Radioactiv. 2006;90:197-209. DOI: 10.1016/j.jenvrad.2006.07.002.10.1016/j.jenvrad.2006.07.00216965842Search in Google Scholar

[53] United Nations. 2008. UNSCEAR 2008 Report Vol. I. Sources of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2008 Report to the General Assembly, with scientific annexes. Annex B. http://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_D.pdf. Accessed March 20th, 2016.Search in Google Scholar

[54] United Nations. 2011. Sources and effects of ionizing radiation. UNSCEAR 2008. VOLUME II. Scientific Annexes C, D and E. http://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_D.pdf. Accessed March 15th, 2016.Search in Google Scholar

[55] Aleksakhin RM, Sanzharova NI, Fesenko SV. Radioecology and the accident at the Chernobyl nuclear power plant. Atomic Energy. 2006;100(4):257-63. DOI: 10.1007/s10512-006-0080-x.10.1007/s10512-006-0080-xSearch in Google Scholar

[56] Wróbel Ł, Dołhańczuk-Śródka A, Kłos A, Ziembik Z. The activity concentration of post-Chernobyl Cs-137 in the area of the Opole Anomaly (southern Poland). Environ Monit Assess. 2015;187(1):4084. DOI: 10.1007/s10661-014-4084-z.10.1007/s10661-014-4084-z25389020Search in Google Scholar

[57] Dołhańczuk-Śródka A, Ziembik Z, Wacławek M, Hyšplerová L. Transfer of cesium-137 from forest soil to moss Pleurozium schreberi. Ecol Chem Eng S. 2011;18(4):509-16. http://tchie.uni.opole.pl/freeECE/S_18_4/DolhanczukSrodkaZiembik_18(S4).pdf.Search in Google Scholar

[58] Ziembik Z, Dołhańczuk-Śródka A, Majcherczyk T, Wacławek M. Illustration of constrained composition statistical methods in the interpretation of radionuclide concentrations in the moss Pleurozium schreberi. J Environ Radioactiv. 2013;117:13-18. DOI: 10.1016/j.jenvrad.2012.04.002.10.1016/j.jenvrad.2012.04.00222673224Search in Google Scholar

[59] Steinnes E, Frontasyeva MV. Marine gradients of halogens in soil studied by epithermal neutron activation analysis. J Radioanal Nuclear Chem. 2002;253(1):173-177. DOI: 10.1023/A:1015849525392.10.1023/A:1015849525392Search in Google Scholar

[60] Frontasyeva MV, Steinnes E. Marine gradients of halogens in moss studies by epithermal neutron activation analysis. J Radioanal Nuclear Chem. 2004;261(1):101-106. DOI: 10.1023/B:JRNC.0000030941.78117.77.10.1023/B:JRNC.0000030941.78117.77Search in Google Scholar

eISSN:
1898-6196
Language:
English