Indoor air pollution and the contribution of biosensors

Open access

Abstract

A vast majority of people today spend more time indoors than outdoors. However, the air quality indoors may be as bad as or even worse than the air quality outside. This is due to the continuous circulation of the same air without proper ventilation and filtration systems, causing a buildup of pollutants. As such, indoor air quality monitoring should be considered more seriously. Indoor air quality (IAQ) is a measure of the air quality within and around buildings and relates to the health and comfort of building occupants. To determine the IAQ, computer modeling is done to simulate the air flow and human exposure to the pollutant. Currently, very few instruments are available to measure the indoor air pollution index. In this paper, we will review the list of techniques available for measuring IAQ, but our emphasis will be on indoor air toxicity monitoring.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Etzov E Cohen AMarks RS Bioluminescent Liquid Light Guide Pad Biosensor for Indoor Air Toxicity Monitoring. Analytical Chemistry 2015; 87(7): p. 3655-3661.

  • 2. Antikainen R Lappalainen S Lonnqvist A Maksi-Mainen K Reijula KUusi-Rauva E Exploring the relationship between indoor air and productivity. Scandinavian Journal of Work Environment & Health 2008: p. 79-82.

  • 3. Wargocki P Wyon DP Baik YK Clausen GFanger PO Perceived air quality Sick Building Syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air-International Journal of Indoor Air Quality and Climate 1999; 9(3): p. 165-179.

  • 4. Molhave L Clausen G Berglund B de Ceaurriz J Kettrup A Lindvall T Maroni M Pickering AC Risse U Rothweiler H Seifert BYounes M Total volatile organic compounds (TVOC) in indoor air quality investigations. Indoor Air-International Journal of Indoor Air Quality and Climate 1997; 7(4): p. 225-240.

  • 5. Bari MA Kindzierski WB Wheeler AJ Heroux MEWallace LA Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton Canada. Building and Environment 2015; 90: p. 114-124.

  • 6. Bako-Biro Z Wargocki P Weschler CJFanger PO Effects of pollution from personal computers on perceived air quality SBS symptoms and productivity in offices. Indoor Air 2004; 14(3): p. 178-187.

  • 7. Lee SC Chan LYChiu MY Indoor and outdoor air quality investigation at 14 public places in Hong Kong. Environment International 1999; 25(4): p. 443-450.

  • 8. Hong T Kim JLee M Integrated task performance score for the building occupants based on the CO2 concentration and indoor climate factors changes. Applied Energy 2018; 228: p. 1707-1713.

  • 9. Hodgson AT Beal DMcIlvaine JER Sources of formaldehyde other aldehydes and terpenes in a new manufactured house. Indoor Air 2002; 12(4): p. 235-242.

  • 10. Kelly TJ Smith DLSatola J Emission rates of formaldehyde from materials and consumer products found in California homes. Environmental Science & Technology 1999; 33(1): p. 81-88.

  • 11. Kawamura K Kerman K Fujihara M Nagatani N Hashiba TTamiya E Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sensors and Actuators B-Chemical 2005; 105(2): p. 495-501.

  • 12. Dirksen JA Duval KRing TA NiO thin-film formaldehyde gas sensor. Sensors and Actuators B-Chemical 2001; 80(2): p. 106-115.

  • 13. Seiyama T Kato A Fujiishi KNagatani M A New Detector for gaseous Components using Semiconductive Thin Films. Analytical Chemistry 1962; 34(11): p. 1502-1503.

  • 14. Weschler CJ Shields HCNalk DV Indoor Chemistry involving O3 NO and NO2 as Evidenced by 14 Months of Measurements at a site in Southern California. Environmental Science & Technology 1994; 28(12): p. 2120-2132.

  • 15. Petit PC Fine DH Vasquez GB Gamero L Slaughter MSDasse KA The Pathophysiology of Nitrogen Dioxide During Inhaled Nitric Oxide Therapy. Asaio Journal 2017; 63(1): p. 7-13.

  • 16. Blomberg A Krishna MT Bocchino V Biscione GL Shute JK Kelly FJ Frew AJ Holgate STSandstrom T The inflammatory effects of 2 ppm NO2 on the airways of healthy subjects. American Journal of Respiratory and Critical Care Medicine 1997; 156(2): p. 418-424.

  • 17. Hui PS Wong LT Mui KWLaw KY Survey of unsatisfactory levels of airborne bacteria in air-conditioned offices. Indoor and Built Environment 2007; 16(2): p. 130-138.

  • 18. Peltola J Andersson MA Haahtela T Mussalo-Rauhamaa H Rainey FA Kroppenstedt RM Samson RASalkinoja-Salonen MS Toxic-metabolite-producing bacteria and fungus in an indoor environment. Applied and Environmental Microbiology 2001; 67(7): p. 3269-3274.

  • 19. Salonen H Lappalainen S Lindroos O Harju RReijula K Fungi and bacteria in mould-damaged and non-damaged office environments in a subarctic climate. Atmospheric Environment 2007; 41(32): p. 6797-6807.

  • 20. Gołofit-Szymczak MGórny RL Microbiological air quality in office buildings equipped with different ventilation systems. Indoor Air; 0(0).

  • 21. Harrison J Pickering CAC Faragher EB Austwick PKC Little SALawton L An Investigation of the Relationship between Microbial and Particulate Indoor Air-Pollution and the Sick Building Syndrome. Respiratory Medicine 1992; 86(3): p. 225-235.

  • 22. Jaakkola JJKMiettinen P Type of Ventilation System in Office Buildings and Sick Building Syndrome. American Journal of Epidemiology 1995; 141(8): p. 755-765.

  • 23. Mendell MJ Fisk WJ Deddens JA Seavey WG Smith AH Smith DF Hodgson AT Daisey JMGoldman LR Elevated symptom prevalence associated with ventilation type in office buildings. Epidemiology 1996; 7(6): p. 583-589.

  • 24. Becher R Øvrevik J Schwarze EP Nilsen S Hongslo KJBakke VJ Do Carpets Impair Indoor Air Quality and Cause Adverse Health Outcomes: A Review. International Journal of Environmental Research and Public Health 2018; 15(2).

  • 25. Zuskin E Schachter E Mustajbegovic J Pucarin-Cvetkovic J Doko-Jelinic JMucic-Pucic B Indoor air pollution and effects on human health. Periodicum Biologorum 2009; 111(1): p. 37-40.

  • 26. Bernstein JA Alexis N Bacchus H Bernstein IL Fritz P Horner E Li N Mason S Nel A Oullette J Reijula K Reponen T Seltzer J Smith ATarlo SM The health effects of nonindustrial indoor air pollution. Journal of Allergy and Clinical Immunology 2008; 121(3): p. 585-591.

  • 27. Hardin BD Kelmen BJSaxon A Adverse human health effects associated with molds in the indoor environment. Journal of Occupational and Environmental Medicine 2003; 45(5): p. 470-478.

  • 28. Hizrri A Zati Nabilah MG Nurul Amni Z Shahida N Maryam Z Hazrin AH Mohd Faez SMohd Shukri MA Indoor air quality (IAQ) characteristics and its microbial community identifications at two selected schools in Pahang Malaysia: a preliminary study. Asian Journal of Agriculture and Biology 2018(No.Special Issue): p. 88-96.

  • 29. Yu BF Hu ZB Liu M Yang HL Kong QXLiu YH Review of research on air-conditioning systems and indoor air quality control for human health. International Journal of Refrigeration 2009; 32(1): p. 3-20.

  • 30. Kim HBernstein JA Air pollution and allergic disease. Current Allergy and Asthma Reports 2009; 9(2): p. 128-133.

  • 31. Maroni M Seifert BLindvall T eds. Indoor Air Quality - A Comprehensive Reference Book. 1995 Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo: Elsevier.

  • 32. Ruano-Ravina AMiguel Barros-Dios J Randon and lung cancer. Implications for health workers citizens and public administrations. Medicina Clinica 2007; 128(14): p. 545-549.

  • 33. Lee YCA Cohet C Yang YC Stayner L Hashibe MStraif K Meta-analysis of epidemiologic studies on cigarette smoking and liver cancer. International Journal of Epidemiology 2009; 38(6): p. 1497-1511.

  • 34. Jones AP Indoor air quality and health. Atmospheric Environment 1999; 33(28): p. 4535-4564.

  • 35. Kim S-H Hwang WJ Cho J-SKang DR Attributable risk of lung cancer deaths due to indoor radon exposure. Annals of Occupational and Environmental Medicine 2016; 28(1): p. 8.

  • 36. Lyman GH Radon in Indoor Air Pollution and Health E.J. Bardana and A. Montanaro Editors. 1997 Marcel Dekker: New York. p. 83-103.

  • 37. Nielson KK Rogers VC Holt RB Pugh TD Grondzik WAdeMeijer RJ Radon penetration of concrete slab cracks joints pipe penetrations and sealants. Health Physics 1997; 73(4): p. 668-678.

  • 38. Cohen BS Xiong JQ Fang CPLi W Deposition of charged particles on lung airways. Health Physics 1998; 74(5): p. 554-560.

  • 39. Klemm R Mason RJ Heilig C Neas LDockery D Is daily mortality associated specifically with fine particles? Data reconstruction and replication of analyses. Journal of Air Waste Management Association 2000; 50(7): p. 1215-22.

  • 40. Ostro B Broadwin R Green S Feng WYLipsett M Fine particulate air pollution and mortality in nine California counties: Results from CALFINE. Environmental Health Perspectives 2006; 114(1): p. 29-33.

  • 41. Rashed MN Total and Extractable Heavy Metals in Indoor Outdoor and Street Dust from Aswan City Egypt. Clean-Soil Air Water 2008; 36(10-11): p. 850-857.

  • 42. Kumar R Nagar JKGaur SN Indoor Air Pollutants and Respiratory Morbidity - A Review. Indian Journal of Allergy Asthma and Immunology 2005; 19(1): p. 1-9.

  • 43. Covaci A Voorspoels Sde Boer J Determination of brominated flame retardants with emphasis on polybrominated diphenyl ethers (PBDEs) in environmental and human samples - a review. Environment International 2003; 29(6): p. 735-756.

  • 44. Kharlyngdoh JB Pradhan A Asnake S Walstad A Ivarsson POlsson P-E Identification of a group of brominated flame retardants as novel androgen receptor antagonists and potential neuronal and endocrine disrupters. Environment International 2015; 74: p. 60-70.

  • 45. Costa LG de Laat R Tagliaferri SPellacani C A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicology Letters 2014; 230(2): p. 282-294.

  • 46. Jin X Lee S Jeong Y Yu J-P Baek WK Shin K-H Kannan KMoon H-B Species-specific accumulation of polybrominated diphenyl ethers (PBDEs) and other emerging flame retardants in several species of birds from Korea. Environmental Pollution 2016; 219: p. 191-200.

  • 47. Lee Y-H Kim H-H Lee J-I Lee J-H Kang HLee J-Y Indoor contamination from pesticides used for outdoor insect control. Science of the Total Environment 2018; 625: p. 994-1002.

  • 48. Chen YLWen J Sensor system design for building indoor air protection. Building and Environment 2008; 43(7): p. 1278-1285.

  • 49. Liu XZhai Z Protecting a whole building from critical indoor contamination with optimal sensor network design and source identification methods. Building and Environment 2009; 44(11): p. 2276-2283.

  • 50. Methods for Monitoring Indoor Air Quality in Schools. 2011 World Health Organization Regional Office for Europe JRC European Commission

  • 51. Weschler CJShields HC Potential reactions among indoor pollutants. Atmospheric Environment 1997; 31(21): p. 3487-3495.

  • 52. Wang DKWAustin CC Determination of complex mixtures of volatile organic compounds in ambient air: canister methodology. Analytical and Bioanalytical Chemistry 2006; 386(4): p. 1099-1120.

  • 53. Mui KW Wong LTHo WL Evaluation on sampling point densities for assessing indoor air quality. Building and Environment 2006; 41(11): p. 1515-1521.

  • 54. Praveen K. S Eric L. B Rangachary MFernando H. G Chemical Sensors for Environmental Monitoring and Homeland Security. The Electrochemical Society Interface 2010: p. 35-40.

  • 55. Persaud KDodd G Analysis of Discrimination Mechanisms in the Mammalian Olfactory System using a Model Nose. Nature 1982; 299(5881): p. 352-355.

  • 56. Dusastre V Electronic noses: Principles and applications. Nature 1999; 402(6760): p. 351-352.

  • 57. Fang X Qi G Guo M Pan M Chen YQIeee An improved integrated electronic nose for online measurement of VOCs in indoor air in 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vols 1-7. 2005. p. 2894-2897.

  • 58. Zampolli S Elmi I Ahmed F Passini M Cardinali GC Nicoletti SDori L An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sensors and Actuators B-Chemical 2004; 101(1-2): p. 39-46.

  • 59. Xu K Fu C Gao Z Wei F Ying Y Xu CFu G Nanomaterial-based gas sensors: A review. Instrumentation Science & Technology 2018; 46(2): p. 115-145.

  • 60. Mohan VB Lau KT Hui DBhattacharyya D Graphene-based materials and their composites: A review on production applications and product limitations. Composites Part B-Engineering 2018; 142: p. 200-220.

  • 61. Schedin F Geim AK Morozov SV Hill EW Blake P Katsnelson MINovoselov KS Detection of individual gas molecules adsorbed on graphene. Nature Materials 2007; 6(9): p. 652-655.

  • 62. Cretu V Postica V Mishra AK Hoppe M Tiginyanu I Mishra YK Chow L de Leeuw NH Adelung RLupan O Synthesis characterization and DFT studies of zinc-doped copper oxide nanocrystals for gas sensing applications. Journal of Materials Chemistry A 2016; 4(17): p. 6527-6539.

  • 63. Li TM Zeng W Long HWWang ZC Nanosheet-assembled hierarchical SnO2 nanostructures for efficient gas-sensing applications. Sensors and Actuators B-Chemical 2016; 231: p. 120-128.

  • 64. Gonzalez O Roso S Vilanova XLlobet E Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra. Beilstein Journal of Nanotechnology 2016; 7: p. 1507-1518.

  • 65. Yoo R Kim J Song MJ Lee WNoh JS Nano-composite sensors composed of single-walled carbon nanotubes and polyaniline for the detection of a nerve agent simulant gas. Sensors and Actuators B-Chemical 2015; 209: p. 444-448.

  • 66. Yoosefian M Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube. Applied Surface Science 2017; 392: p. 225-230.

  • 67. Dong CK Luo HJ Cai JQ Wang FQ Zhao YYLi DT Hydrogen sensing characteristics from carbon nanotube field emissions. Nanoscale 2016; 8(10): p. 5599-5604.

  • 68. Xiao ZH Kong LB Ruan SC Li XL Yu SJ Li XY Jiang Y Yao ZJ Ye S Wang CH Zhang TS Zhou KLi S Recent development in nanocarbon materials for gas sensor applications. Sensors and Actuators B-Chemical 2018; 274: p. 235-267.

  • 69. Wei BY Hsu MC Su PG Lin HM Wu RJLai HJ A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sensors and Actuators B-Chemical 2004; 101(1-2): p. 81-89.

  • 70. Wang J Liu L Cong S-Y Qi J-QXu B-K An enrichment method to detect low concentration formaldehyde. Sensors and Actuators B-Chemical 2008; 134(2): p. 1010-1015.

  • 71. Bittencourt C Felten A Espinosa EH Ionescu R Llobet E Corteig XPireaux JJ WO3 films modified with functionalised multi-wall carbon nanotubes: Morphological compositional and gas response studies. Sensors and Actuators B-Chemical 2006; 115(1): p. 33-41.

  • 72. Li Y Wang H-cYang M-j n-Type gas sensing characteristics of chemically modified multi-walled carbon nanotubes and PMMA composite. Sensors and Actuators B-Chemical 2007; 121(2): p. 496-500.

  • 73. Liu YL Yang HF Yang Y Liu ZM Shen GLYu RQ Gas sensing properties of tin dioxide coated onto multi-walled carbon nanotubes. Thin Solid Films 2006; 497(1-2): p. 355-360.

  • 74. Penza M Rossi R Alvisi M Cassano G Signore MA Serra EGiorgi R Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sensors and Actuators B-Chemical 2008; 135(1): p. 289-297.

  • 75. Arnold C Harms MGoschnick J Air Quality Monitoring and Fire Detection With The Karlsruhe Electronic Micronose KAMINA. Ieee Sensors Journal 2002; 2(3): p. 179-188.

  • 76. Yang L Yin CB Zhang ZL Zhou JJXu HH The investigation of hydrogen gas sensing properties of SAW gas sensor based on palladium surface modified SnO2 thin film. Materials Science in Semiconductor Processing 2017; 60: p. 16-28.

  • 77. Singh H Raj VB Kumar J Durani F Mishra M Nimal ATSharma MU SAW mono sensor for identification of harmful vapors using PCA and ANN. Process Safety and Environmental Protection 2016; 102: p. 577-588.

  • 78. Rana L Gupta R Tomar MGupta V ZnO/ST-Quartz SAW resonator: An efficient NO2 gas sensor. Sensors and Actuators B-Chemical 2017; 252: p. 840-845.

  • 79. Staline JDr TS Design and Analysis of SAW Based MEMS Gas Sensor for the Detection of Volatile Organic Gases. International Journal of Engineering Research and Applications 2014; 4(3): p. 254-258.

  • 80. Wang W Hu HL Liu XL He ST Pan Y Zhang CHDong C Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A Coating. Sensors 2016; 16(1).

  • 81. Thomas S Cole M Villa-López FHGardner JW High frequency surface acoustic wave resonator-based sensor for particulate matter detection. Sensors and Actuators A: Physical 2016; 244: p. 138-145.

  • 82. Zhou J Li P Zhang S Long YC Zhou F Huang YP Yang PYBao MH Zeolite-modified microcantilever gas sensor for indoor air quality control. Sensors and Actuators B-Chemical 2003; 94(3): p. 337-342.

  • 83. Bearzotti A Macagnano A Papa P Venditti IZampetti E A study of a QCM sensor based on pentacene for the detection of BTX vapors in air. Sensors and Actuators B: Chemical 2017; 240: p. 1160-1164.

  • 84. Kumar A Brunet J Varenne C Ndiaye A Pauly A Penza MAlvisi M Tetra-tert-butyl copper phthalocyanine-based QCM sensor for toluene detection in air at room temperature. Sensors and Actuators B: Chemical 2015; 210: p. 398-407.

  • 85. Clément P Llobet E Lucat CDebéda H Use of a CNT-coated Piezoelectric Cantilever with Double Transduction As a Gas Sensor for Benzene Detection at Room Temperature. Procedia Engineering 2014; 87: p. 708-711.

  • 86. Clément P Llobet E Lucat CDebéda H Gas Discrimination Using Screen-printed Piezoelectric Cantilevers Coated with Carbon Nanotubes. Procedia Engineering 2015; 120: p. 987-992.

  • 87. Shi LQ Hasegawa Y Katsube T Nakano M Nakamura KIeee Highly sensitive SnO2-based gas sensor for indoor air quality monitoring. Transducers ‘05 Digest of Technical Papers Vols 1 and 2. 2005. 1203-1206.

  • 88. Lv P Tang ZA Yu J Zhang FT Wei GF Huang ZXHu Y Study on a micro-gas sensor with SnO2-NiO sensitive film for indoor formaldehyde detection. Sensors and Actuators B-Chemical 2008; 132(1): p. 74-80.

  • 89. Zhou K Ji X Zhang NZhang X On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor. Sensors and Actuators B-Chemical 2006; 119(2): p. 392-397.

  • 90. Lee C-Y Chiang C-M Wang Y-HMa R-H A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sensors and Actuators B-Chemical 2007; 122(2): p. 503-510.

  • 91. Sasahara T Kato H Saito A Nishimura MEgashira M Development of a ppb-level sensor based on catalytic combustion for total volatile organic compounds in indoor air. Sensors and Actuators B-Chemical 2007; 126(2): p. 536-543.

  • 92. Schwandt C Kumar RVHills MP Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide. Sensors and Actuators B: Chemical 2018; 265: p. 27-34.

  • 93. Menart E Jovanovski VHočevar SB Novel hydrazinium polyacrylate-based electrochemical gas sensor for formaldehyde. Sensors and Actuators B: Chemical 2017; 238: p. 71-75.

  • 94. Wan H Yin H Lin L Zeng XMason AJ Miniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoring. Sensors and Actuators B: Chemical 2018; 255: p. 638-646.

  • 95. Kuberský P Syrový T Hamáček A Nešpůrek SSyrová L Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sensors and Actuators B: Chemical 2015; 209: p. 1084-1090.

  • 96. Rao Z Liu L Xie JZeng Y Development of a benzene vapour sensor utilizing chemiluminescence on Y2O3. Luminescence 2008; 23(3): p. 163-168.

  • 97. Maruo YY Nakamura J Uchiyama M Higuchi MIzunli K Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent. Sensors and Actuators B-Chemical 2008; 129(2): p. 544-550.

  • 98. Yi SH Park YH Han SO Min NK Kim ES Ahn THIeee Novel NDIR CO2 sensor for indoor air quality monitoring. Transducers ‘05 Digest of Technical Papers Vols 1 and 2. 2005. 1211-1214.

  • 99. Tavoli FAlizadeh N Optical ammonia gas sensor based on nanostructure dye-doped polypyrrole. Sensors and Actuators B-Chemical 2013; 176: p. 761-767.

  • 100. Burratti L De Matteis F Casalboni M Francini R Pizzoferrato RProsposito P Polystyrene photonic crystals as optical sensors for volatile organic compounds. Materials Chemistry and Physics 2018; 212: p. 274-281.

  • 101. Paliwal A Sharma A Tomar MGupta V Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sensors and Actuators B: Chemical 2017; 250: p. 679-685.

  • 102. Subramanian M Dhayabaran VV Sastikumar DShanmugavadivel M Development of room temperature fiber optic gas sensor using clad modified Zn3 (VO4)2. Journal of Alloys and Compounds 2018; 750: p. 153-163.

  • 103. Manjula M Karthikeyan BSastikumar D Sensing characteristics of clad-modified (Ho-doped Bi2O3 nanoparticles) fibre optic gas sensor. Optical Fiber Technology 2018; 45: p. 35-39.

  • 104. Khan MRR Kang B-H Yeom S-H Kwon D-HKang S-W Fiber-optic pulse width modulation sensor for low concentration VOC gas. Sensors and Actuators B: Chemical 2013; 188: p. 689-696.

  • 105. Renganathan BGanesan AR Fiber optic gas sensor with nanocrystalline ZnO. Optical Fiber Technology 2014; 20(1): p. 48-52.

  • 106. Girotti S Ferri EN Fumo MGMaiolini E Monitoring of environmental pollutants by bioluminescent bacteria. Analytica Chimica Acta 2008; 608(1): p. 2-29.

  • 107. Roda A Pasini P Mirasoli M Michelini EGuardigli M Biotechnological applications of bioluminescence and chemiluminescence. Trends in Biotechnology 2004; 22(6): p. 295-303.

  • 108. Valdman E Valdman B Battaglini FLeite SGF On-line detection of low naphthalene concentrations with a bioluminescent sensor. Process Biochemistry 2004; 39(10): p. 1217-1222.

  • 109. Valdman EGutz IGR Bioluminescent sensor for naphthalene in air: Cell immobilization and evaluation with a dynamic standard atmosphere generator. Sensors and Actuators B-Chemical 2008; 133(2): p. 656-663.

  • 110. Werlen C Jaspers MCMvan der Meer JR Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Applied and Environmental Microbiology 2004; 70(1): p. 43-51.

  • 111. Eltzov E Pavluchkov V Burstain MMarks R Creation of a fiber optic based biosensor for air toxicity monitoring. Sensors & Actuators: B. Chemical 2011; in print (SNB12864).

  • 112. Shakeel S A. F.Shraddha P Bioluminescent bacteria: The sparkling hope for pollution detection. Indian Journal of Scientific Research 2018; 8(1): p. 125-130.

  • 113. Podola BMelkonian M A long-term operating algal biosensor for the rapid detection of volatile toxic compounds. Journal of Applied Phycology 2003; 15(5): p. 415-424.

  • 114. Podola B Nowack ECMMelkonian M The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosensors and Bioelectronics 2004; 19(10): p. 1253-1260.

  • 115. Jiang Y Liang P Huang XRen ZJ A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring. Chemosphere 2018; 203: p. 21-25.

  • 116. Zhou S Huang S Li Y Zhao N Li H Angelidaki IZhang Y Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring. Talanta 2018; 186: p. 368-371.

  • 117. Rasinger JD Marrazza G Briganti F Scozzafava A Mascini MTurner APF Evaluation of an FIA operated amperometric bacterial biosensor based on pseudomonas putida F1 for the detection of benzene toluene ethylbenzene and xylenes (BTEX). Analytical Letters 2005; 38(10): p. 1531-1547.

  • 118. Berno E Marcondes DFP Gamalero SREandi M Recombinant Escherichia coli for the biomonitoring of benzene and its derivatives in the air. Ecotoxicology and Environmental Safety 2004; 57(2): p. 118-122.

  • 119. Knopf GK Bassi AS Singh SMacleod R Biosensor for remote monitoring of airborne toxins in Environmental Monitoring and Remediation Technologies Ii T. VoDinh and R.L. Spellicy Editors. 1999. p. 185-193.

  • 120. Seo J Kato S Tatsuma T Chino S Takada KNotsu H Biosensing of an indoor volatile organic compound on the basis of fungal growth Chemosphere 2008; 72(9): p. 1286-1291

  • 121. Keiko A A Method For Numerical Characterization Of Indoor Climates By A Biosensor Using A Xerophilic Fungus. Indoor Air 1993; 3(4): p. 344-348.

  • 122. Mitsubayashi K Nishio G Sawai M Kazawa E Yoshida H Saito T Kudo H Otsuka K Takao MSaito H A biochemical sniffer-chip for convenient analysis of gaseous formaldehyde from timber materials. Microchimica Acta 2008; 160(4): p. 427-433.

  • 123. Shimomura T Itoh T Sumiya T Mizukami FOno M Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sensors and Actuators B-Chemical 2008; 135(1): p. 268-275.

  • 124. Sigawi S Smutok O Demkiv O Gayda G Vus B Nitzan Y Gonchar MNisnevitch M Detection of Waterborne and Airborne Formaldehyde: From Amperometric Chemosensing to a Visual Biosensor Based on Alcohol Oxidase. Materials 2014; 7(2): p. 1055.

  • 125. Vianello F Boscolo-Chio R Signorini SRigo A On-line detection of atmospheric formaldehyde by a conductometric biosensor. Biosensors and Bioelectronics 2007; 22(6): p. 920-925.

  • 126. Ray S Panjikar SAnand R Design of Protein-Based Biosensors for Selective Detection of Benzene Groups of Pollutants. ACS Sensors 2018; 3(9): p. 1632-1638.

  • 127. Li S Liu H Yang G Liu S Liu RLv C Detection of radon with biosensors based on the lead(II)-induced conformational change of aptamer HTG and malachite green fluorescence probe. Journal of Environmental Radioactivity 2018; 195: p. 60-66.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 524 524 50
PDF Downloads 371 371 19