Cite

Etzov E, Cohen A,Marks RS, Bioluminescent Liquid Light Guide Pad Biosensor for Indoor Air Toxicity Monitoring. Analytical Chemistry, 2015; 87(7): p. 3655-3661.10.1021/ac503820825775008EtzovECohenAMarksRSBioluminescent Liquid Light Guide Pad Biosensor for Indoor Air Toxicity MonitoringAnalytical Chemistry201587736553661Open DOISearch in Google Scholar

Antikainen R, Lappalainen S, Lonnqvist A, Maksi-Mainen K, Reijula K,Uusi-Rauva E, Exploring the relationship between indoor air and productivity. Scandinavian Journal of Work Environment & Health, 2008: p. 79-82.AntikainenRLappalainenSLonnqvistAMaksi-MainenKReijulaKUusi-RauvaEExploring the relationship between indoor air and productivityScandinavian Journal of Work Environment & Health20087982Search in Google Scholar

Wargocki P, Wyon DP, Baik YK, Clausen G,Fanger PO, Perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air-International Journal of Indoor Air Quality and Climate, 1999; 9(3): p. 165-179.WargockiPWyonDPBaikYKClausenGFangerPOPerceived air quality, Sick Building Syndrome (SBS) symptoms and productivity in an office with two different pollution loadsIndoor Air-International Journal of Indoor Air Quality and Climate19999316517910.1111/j.1600-0668.1999.t01-1-00003.xSearch in Google Scholar

Molhave L, Clausen G, Berglund B, de Ceaurriz J, Kettrup A, Lindvall T, Maroni M, Pickering AC, Risse U, Rothweiler H, Seifert B,Younes M, Total volatile organic compounds (TVOC) in indoor air quality investigations. Indoor Air-International Journal of Indoor Air Quality and Climate, 1997; 7(4): p. 225-240.MolhaveLClausenGBerglundBde CeaurrizJKettrupALindvallTMaroniMPickeringACRisseURothweilerHSeifertBYounesMTotal volatile organic compounds (TVOC) in indoor air quality investigationsIndoor Air-International Journal of Indoor Air Quality and Climate19977422524010.1111/j.1600-0668.1997.00002.xSearch in Google Scholar

Bari MA, Kindzierski WB, Wheeler AJ, Heroux ME,Wallace LA, Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada. Building and Environment, 2015; 90: p. 114-124.10.1016/j.buildenv.2015.03.023BariMAKindzierskiWBWheelerAJHerouxMEWallaceLASource apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, CanadaBuilding and Environment201590114124Open DOISearch in Google Scholar

Bako-Biro Z, Wargocki P, Weschler CJ,Fanger PO, Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices. Indoor Air, 2004; 14(3): p. 178-187.10.1111/j.1600-0668.2004.00218.x15104785Bako-BiroZWargockiPWeschlerCJFangerPOEffects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in officesIndoor Air2004143178187Open DOISearch in Google Scholar

Lee SC, Chan LY,Chiu MY, Indoor and outdoor air quality investigation at 14 public places in Hong Kong. Environment International, 1999; 25(4): p. 443-450.10.1016/S0160-4120(99)00019-7LeeSCChanLYChiuMYIndoor and outdoor air quality investigation at 14 public places in Hong KongEnvironment International1999254443450Open DOISearch in Google Scholar

Hong T, Kim J,Lee M, Integrated task performance score for the building occupants based on the CO2 concentration and indoor climate factors changes. Applied Energy, 2018; 228: p. 1707-1713.10.1016/j.apenergy.2018.07.063HongTKimJLeeMIntegrated task performance score for the building occupants based on the CO2 concentration and indoor climate factors changesApplied Energy201822817071713Open DOISearch in Google Scholar

Hodgson AT, Beal D,McIlvaine JER, Sources of formaldehyde, other aldehydes and terpenes in a new manufactured house. Indoor Air, 2002; 12(4): p. 235-242.10.1034/j.1600-0668.2002.01129.xHodgsonATBealDMcIlvaineJERSources of formaldehyde, other aldehydes and terpenes in a new manufactured houseIndoor Air200212423524212532755Open DOISearch in Google Scholar

Kelly TJ, Smith DL,Satola J, Emission rates of formaldehyde from materials and consumer products found in California homes. Environmental Science & Technology, 1999; 33(1): p. 81-88.10.1021/es980592+KellyTJSmithDLSatolaJEmission rates of formaldehyde from materials and consumer products found in California homesEnvironmental Science & Technology19993318188Open DOISearch in Google Scholar

Kawamura K, Kerman K, Fujihara M, Nagatani N, Hashiba T,Tamiya E, Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sensors and Actuators B-Chemical, 2005; 105(2): p. 495-501.10.1016/j.snb.2004.07.010KawamuraKKermanKFujiharaMNagataniNHashibaTTamiyaEDevelopment of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndromeSensors and Actuators B-Chemical20051052495501Open DOISearch in Google Scholar

Dirksen JA, Duval K,Ring TA, NiO thin-film formaldehyde gas sensor. Sensors and Actuators B-Chemical, 2001; 80(2): p. 106-115.10.1016/S0925-4005(01)00898-XDirksenJADuvalKRingTANiO thin-film formaldehyde gas sensorSensors and Actuators B-Chemical2001802106115Open DOISearch in Google Scholar

Seiyama T, Kato A, Fujiishi K,Nagatani M, A New Detector for gaseous Components using Semiconductive Thin Films. Analytical Chemistry, 1962; 34(11): p. 1502-1503.10.1021/ac60191a001SeiyamaTKatoAFujiishiKNagataniMA New Detector for gaseous Components using Semiconductive Thin FilmsAnalytical Chemistry1962341115021503Open DOISearch in Google Scholar

Weschler CJ, Shields HC,Nalk DV, Indoor Chemistry involving O3, NO, and NO2 as Evidenced by 14 Months of Measurements at a site in Southern California. Environmental Science & Technology, 1994; 28(12): p. 2120-2132.10.1021/es00061a021WeschlerCJShieldsHCNalkDVIndoor Chemistry involving O3, NO, and NO2 as Evidenced by 14 Months of Measurements at a site in Southern CaliforniaEnvironmental Science & Technology1994281221202132Open DOISearch in Google Scholar

Petit PC, Fine DH, Vasquez GB, Gamero L, Slaughter MS,Dasse KA, The Pathophysiology of Nitrogen Dioxide During Inhaled Nitric Oxide Therapy. Asaio Journal, 2017; 63(1): p. 7-13.10.1097/MAT.0000000000000425PetitPCFineDHVasquezGBGameroLSlaughterMSDasseKAThe Pathophysiology of Nitrogen Dioxide During Inhaled Nitric Oxide TherapyAsaio Journal2017631713Open DOISearch in Google Scholar

Blomberg A, Krishna MT, Bocchino V, Biscione GL, Shute JK, Kelly FJ, Frew AJ, Holgate ST,Sandstrom T, The inflammatory effects of 2 ppm NO2 on the airways of healthy subjects. American Journal of Respiratory and Critical Care Medicine, 1997; 156(2): p. 418-424.10.1164/ajrccm.156.2.96120429279218BlombergAKrishnaMTBocchinoVBiscioneGLShuteJKKellyFJFrewAJHolgateSTSandstromTThe inflammatory effects of 2 ppm NO2 on the airways of healthy subjectsAmerican Journal of Respiratory and Critical Care Medicine19971562418424Open DOISearch in Google Scholar

Hui PS, Wong LT, Mui KW,Law KY, Survey of unsatisfactory levels of airborne bacteria in air-conditioned offices. Indoor and Built Environment, 2007; 16(2): p. 130-138.10.1177/1420326X06076259HuiPSWongLTMuiKWLawKYSurvey of unsatisfactory levels of airborne bacteria in air-conditioned officesIndoor and Built Environment2007162130138Open DOISearch in Google Scholar

Peltola J, Andersson MA, Haahtela T, Mussalo-Rauhamaa H, Rainey FA, Kroppenstedt RM, Samson RA,Salkinoja-Salonen MS, Toxic-metabolite-producing bacteria and fungus in an indoor environment. Applied and Environmental Microbiology, 2001; 67(7): p. 3269-3274.10.1128/AEM.67.7.3269-3274.2001PeltolaJAnderssonMAHaahtelaTMussalo-RauhamaaHRaineyFAKroppenstedtRMSamsonRASalkinoja-SalonenMSToxic-metabolite-producing bacteria and fungus in an indoor environmentApplied and Environmental Microbiology200167732693274Open DOISearch in Google Scholar

Salonen H, Lappalainen S, Lindroos O, Harju R,Reijula K, Fungi and bacteria in mould-damaged and non-damaged office environments in a subarctic climate. Atmospheric Environment, 2007; 41(32): p. 6797-6807.10.1016/j.atmosenv.2007.04.043SalonenHLappalainenSLindroosOHarjuRReijulaKFungi and bacteria in mould-damaged and non-damaged office environments in a subarctic climateAtmospheric Environment2007413267976807Open DOISearch in Google Scholar

Gołofit-Szymczak M,Górny RL, Microbiological air quality in office buildings equipped with different ventilation systems. Indoor Air; 0(0).Gołofit-SzymczakMGórnyRLMicrobiological air quality in office buildings equipped with different ventilation systemsIndoor Air00Search in Google Scholar

Harrison J, Pickering CAC, Faragher EB, Austwick PKC, Little SA,Lawton L, An Investigation of the Relationship between Microbial and Particulate Indoor Air-Pollution and the Sick Building Syndrome. Respiratory Medicine, 1992; 86(3): p. 225-235.10.1016/S0954-6111(06)80060-01620910HarrisonJPickeringCACFaragherEBAustwickPKCLittleSALawtonLAn Investigation of the Relationship between Microbial and Particulate Indoor Air-Pollution and the Sick Building SyndromeRespiratory Medicine1992863225235Open DOISearch in Google Scholar

Jaakkola JJK,Miettinen P, Type of Ventilation System in Office Buildings and Sick Building Syndrome. American Journal of Epidemiology, 1995; 141(8): p. 755-765.770991810.1093/oxfordjournals.aje.a117498JaakkolaJJKMiettinenPType of Ventilation System in Office Buildings and Sick Building SyndromeAmerican Journal of Epidemiology199514187557657709918Search in Google Scholar

Mendell MJ, Fisk WJ, Deddens JA, Seavey WG, Smith AH, Smith DF, Hodgson AT, Daisey JM,Goldman LR, Elevated symptom prevalence associated with ventilation type in office buildings. Epidemiology, 1996; 7(6): p. 583-589.10.1097/00001648-199611000-000048899383MendellMJFiskWJDeddensJASeaveyWGSmithAHSmithDFHodgsonATDaiseyJMGoldmanLRElevated symptom prevalence associated with ventilation type in office buildingsEpidemiology199676583589Open DOISearch in Google Scholar

Becher R, Øvrevik J, Schwarze EP, Nilsen S, Hongslo KJ,Bakke VJ, Do Carpets Impair Indoor Air Quality and Cause Adverse Health Outcomes: A Review. International Journal of Environmental Research and Public Health, 2018; 15(2).BecherRØvrevikJSchwarzeEPNilsenSHongsloKJBakkeVJDoCarpets Impair Indoor Air QualityCauseAdverseHealth Outcomes: A ReviewInternational Journal of Environmental Research and Public Health201815210.3390/ijerph15020184Search in Google Scholar

Zuskin E, Schachter E, Mustajbegovic J, Pucarin-Cvetkovic J, Doko-Jelinic J,Mucic-Pucic B, Indoor air pollution and effects on human health. Periodicum Biologorum, 2009; 111(1): p. 37-40.ZuskinESchachterEMustajbegovicJPucarin-CvetkovicJDoko-JelinicJMucic-PucicBIndoor air pollution and effects on human healthPeriodicum Biologorum200911113740Search in Google Scholar

Bernstein JA, Alexis N, Bacchus H, Bernstein IL, Fritz P, Horner E, Li N, Mason S, Nel A, Oullette J, Reijula K, Reponen T, Seltzer J, Smith A,Tarlo SM, The health effects of nonindustrial indoor air pollution. Journal of Allergy and Clinical Immunology, 2008; 121(3): p. 585-591.10.1016/j.jaci.2007.10.045BernsteinJAAlexisNBacchusHBernsteinILFritzPHornerELiNMasonSNelAOulletteJReijulaKReponenTSeltzerJSmithATarloSMThe health effects of nonindustrial indoor air pollutionJournal of Allergy and Clinical Immunology20081213585591Open DOISearch in Google Scholar

Hardin BD, Kelmen BJ,Saxon A, Adverse human health effects associated with molds in the indoor environment. Journal of Occupational and Environmental Medicine, 2003; 45(5): p. 470-478.10.1097/00043764-200305000-0000612762072HardinBDKelmenBJSaxonAAdverse human health effects associated with molds in the indoor environmentJournal of Occupational and Environmental Medicine2003455470478Open DOISearch in Google Scholar

Hizrri A, Zati Nabilah MG, Nurul Amni Z, Shahida N, Maryam Z, Hazrin AH, Mohd Faez S,Mohd Shukri MA, Indoor air quality (IAQ) characteristics and its microbial community identifications at two selected schools in Pahang, Malaysia: a preliminary study. Asian Journal of Agriculture and Biology, 2018(No.Special Issue): p. 88-96.HizrriAZati NabilahMGNurul AmniZShahidaNMaryamZHazrinAHMohd FaezSMohd ShukriMAIndoor air quality (IAQ) characteristics and its microbial community identifications at two selected schools in Pahang, Malaysia: a preliminary studyAsian Journal of Agriculture and Biology2018No.Special Issue8896Search in Google Scholar

Yu BF, Hu ZB, Liu M, Yang HL, Kong QX,Liu YH, Review of research on air-conditioning systems and indoor air quality control for human health. International Journal of Refrigeration, 2009; 32(1): p. 3-20.10.1016/j.ijrefrig.2008.05.004YuBFHuZBLiuMYangHLKongQXLiuYHReview of research on air-conditioning systems and indoor air quality control for human healthInternational Journal of Refrigeration2009321320Open DOISearch in Google Scholar

Kim H,Bernstein JA, Air pollution and allergic disease. Current Allergy and Asthma Reports, 2009; 9(2): p. 128-133.1921090210.1007/s11882-009-0019-0KimHBernsteinJAAir pollution and allergic diseaseCurrent Allergy and Asthma Reports200992128133Search in Google Scholar

Maroni M, Seifert B,Lindvall T, eds. Indoor Air Quality - A Comprehensive Reference Book. 1995, Amsterdam-Lausanne-New York-Oxford-Shannon-Tokyo: Elsevier.MaroniMSeifertBLindvallTIndoor Air Quality - A Comprehensive Reference Book1995Amsterdam-Lausanne-New York-Oxford-Shannon-TokyoElsevierSearch in Google Scholar

Ruano-Ravina A,Miguel Barros-Dios J, Randon and lung cancer. Implications for health workers, citizens and public administrations. Medicina Clinica, 2007; 128(14): p. 545-549.Ruano-RavinaAMiguel Barros-DiosJRandon and lung cancer. Implications for health workers, citizens and public administrationsMedicina Clinica20071281454554910.1157/13101166Search in Google Scholar

Lee YCA, Cohet C, Yang YC, Stayner L, Hashibe M,Straif K, Meta-analysis of epidemiologic studies on cigarette smoking and liver cancer. International Journal of Epidemiology, 2009; 38(6): p. 1497-1511.10.1093/ije/dyp28019720726LeeYCACohetCYangYCStaynerLHashibeMStraifKMeta-analysis of epidemiologic studies on cigarette smoking and liver cancerInternational Journal of Epidemiology200938614971511Open DOISearch in Google Scholar

Jones AP, Indoor air quality and health. Atmospheric Environment, 1999; 33(28): p. 4535-4564.10.1016/S1352-2310(99)00272-1JonesAPIndoor air quality and healthAtmospheric Environment1999332845354564Open DOISearch in Google Scholar

Kim S-H, Hwang WJ, Cho J-S,Kang DR, Attributable risk of lung cancer deaths due to indoor radon exposure. Annals of Occupational and Environmental Medicine, 2016; 28(1): p. 8.10.1186/s40557-016-0093-426925236KimS-HHwangWJChoJ-SKangDRAttributable risk of lung cancer deaths due to indoor radon exposureAnnals of Occupational and Environmental Medicine20162818476832526925236Open DOISearch in Google Scholar

Lyman GH, Radon, in Indoor Air Pollution and Health, E.J. Bardana and A. Montanaro, Editors. 1997, Marcel Dekker: New York. p. 83-103.LymanGHRadon, in Indoor Air Pollution and HealthBardanaE.J.MontanaroA.1997Marcel DekkerNew York83103Search in Google Scholar

Nielson KK, Rogers VC, Holt RB, Pugh TD, Grondzik WA,deMeijer RJ, Radon penetration of concrete slab cracks, joints, pipe penetrations, and sealants. Health Physics, 1997; 73(4): p. 668-678.10.1097/00004032-199710000-000139314229NielsonKKRogersVCHoltRBPughTDGrondzikWAdeMeijerRJRadon penetration of concrete slab cracks, joints, pipe penetrations, and sealantsHealth Physics1997734668678Open DOISearch in Google Scholar

Cohen BS, Xiong JQ, Fang CP,Li W, Deposition of charged particles on lung airways. Health Physics, 1998; 74(5): p. 554-560.10.1097/00004032-199805000-000029570158CohenBSXiongJQFangCPLiWDeposition of charged particles on lung airwaysHealth Physics1998745554560Open DOISearch in Google Scholar

Klemm R, Mason RJ, Heilig C, Neas L,Dockery D, Is daily mortality associated specifically with fine particles? Data reconstruction and replication of analyses. Journal of Air Waste Management Association, 2000; 50(7): p. 1215-22.10.1080/10473289.2000.10464149KlemmRMasonRJHeiligCNeasLDockeryDIs daily mortality associated specifically with fine particles? Data reconstruction and replication of analysesJournal of Air Waste Management Association2000507121522Open DOISearch in Google Scholar

Ostro B, Broadwin R, Green S, Feng WY,Lipsett M, Fine particulate air pollution and mortality in nine California counties: Results from CALFINE. Environmental Health Perspectives, 2006; 114(1): p. 29-33.10.1289/ehp.833516393654OstroBBroadwinRGreenSFengWYLipsettMFine particulate air pollution and mortality in nine California counties: Results from CALFINEEnvironmental Health Perspectives200611412933Open DOISearch in Google Scholar

Rashed MN, Total and Extractable Heavy Metals in Indoor, Outdoor and Street Dust from Aswan City, Egypt. Clean-Soil Air Water, 2008; 36(10-11): p. 850-857.10.1002/clen.200800062RashedMNTotal and Extractable Heavy Metals in Indoor, Outdoor and Street Dust from Aswan City, EgypClean-Soil Air Water20083610-11850857Open DOISearch in Google Scholar

Kumar R, Nagar JK,Gaur SN, Indoor Air Pollutants and Respiratory Morbidity - A Review. Indian Journal of Allergy Asthma and Immunology, 2005; 19(1): p. 1-9.KumarRNagarJKGaurSNIndoorAir PollutantsRespiratoryMorbidity- A ReviewIndian Journal of Allergy Asthma and Immunology200519119Search in Google Scholar

Covaci A, Voorspoels S,de Boer J, Determination of brominated flame retardants, with emphasis on polybrominated diphenyl ethers (PBDEs) in environmental and human samples - a review. Environment International, 2003; 29(6): p. 735-756.10.1016/S0160-4120(03)00114-412850093CovaciAVoorspoelsSde BoerJDetermination of brominated flame retardants, with emphasis on polybrominated diphenyl ethers (PBDEs) in environmental and human samples - a reviewEnvironment International2003296735756Open DOISearch in Google Scholar

Kharlyngdoh JB, Pradhan A, Asnake S, Walstad A, Ivarsson P,Olsson P-E, Identification of a group of brominated flame retardants as novel androgen receptor antagonists and potential neuronal and endocrine disrupters. Environment International, 2015; 74: p. 60-70.2545422110.1016/j.envint.2014.09.002KharlyngdohJBPradhanAAsnakeSWalstadAIvarssonPOlssonP-EIdentification of a group of brominated flame retardants as novel androgen receptor antagonists and potential neuronal and endocrine disruptersEnvironment International201574607025454221Search in Google Scholar

Costa LG, de Laat R, Tagliaferri S,Pellacani C, A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicology Letters, 2014; 230(2): p. 282-294.10.1016/j.toxlet.2013.11.01124270005CostaLGde LaatRTagliaferriSPellacaniCA mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicityToxicology Letters20142302282294402844024270005Open DOISearch in Google Scholar

Jin X, Lee S, Jeong Y, Yu J-P, Baek WK, Shin K-H, Kannan K,Moon H-B, Species-specific accumulation of polybrominated diphenyl ethers (PBDEs) and other emerging flame retardants in several species of birds from Korea. Environmental Pollution, 2016; 219: p. 191-200.10.1016/j.envpol.2016.10.040JinXLeeSJeongYYuJ-PBaekWKShinK-HKannanKMoonH-BSpecies-specific accumulation of polybrominated diphenyl ethers (PBDEs) and other emerging flame retardants in several species of birds from KoreaEnvironmental Pollution201621919120027814535Open DOISearch in Google Scholar

Lee Y-H, Kim H-H, Lee J-I, Lee J-H, Kang H,Lee J-Y, Indoor contamination from pesticides used for outdoor insect control. Science of the Total Environment, 2018; 625: p. 994-1002.10.1016/j.scitotenv.2018.01.010LeeY-HKimH-HLeeJ-ILeeJ-HKangHLeeJ-YIndoor contamination from pesticides used for outdoor insect controlScience of the Total Environment2018625994100229996466Open DOISearch in Google Scholar

Chen YL,Wen J, Sensor system design for building indoor air protection. Building and Environment, 2008; 43(7): p. 1278-1285.10.1016/j.buildenv.2007.03.011ChenYLWenJSensor system design for building indoor air protectionBuilding and Environment200843712781285Open DOISearch in Google Scholar

Liu X,Zhai Z, Protecting a whole building from critical indoor contamination with optimal sensor network design and source identification methods. Building and Environment, 2009; 44(11): p. 2276-2283.10.1016/j.buildenv.2009.03.009LiuXZhaiZProtecting a whole building from critical indoor contamination with optimal sensor network design and source identification methodsBuilding and Environment2009441122762283Open DOISearch in Google Scholar

Methods for Monitoring Indoor Air Quality in Schools. 2011, World Health Organization Regional Office for Europe, JRC European CommissionMethods for Monitoring Indoor Air Quality in Schools2011World Health Organization Regional Office for Europe, JRC European CommissionSearch in Google Scholar

Weschler CJ,Shields HC, Potential reactions among indoor pollutants. Atmospheric Environment, 1997; 31(21): p. 3487-3495.10.1016/S1352-2310(97)00219-7WeschlerCJShieldsHCPotential reactions among indoor pollutantsAtmospheric Environment1997312134873495Open DOISearch in Google Scholar

Wang DKW,Austin CC, Determination of complex mixtures of volatile organic compounds in ambient air: canister methodology. Analytical and Bioanalytical Chemistry, 2006; 386(4): p. 1099-1120.1677570510.1007/s00216-006-0466-6WangDKWAustinCCDetermination of complex mixtures of volatile organic compounds in ambient air: canister methodologyAnalytical and Bioanalytical Chemistry200638641099112016775705Search in Google Scholar

Mui KW, Wong LT,Ho WL, Evaluation on sampling point densities for assessing indoor air quality. Building and Environment, 2006; 41(11): p. 1515-1521.10.1016/j.buildenv.2005.05.039MuiKWWongLTHoWLEvaluation on sampling point densities for assessing indoor air qualityBuilding and Environment2006411115151521Open DOISearch in Google Scholar

Praveen K. S, Eric L. B, Rangachary M,Fernando H. G, Chemical Sensors for Environmental Monitoring and Homeland Security. The Electrochemical Society Interface, 2010: p. 35-40.PraveenK. SEricL. BRangacharyMFernandoH. GChemical Sensors for Environmental Monitoring and Homeland SecurityThe Electrochemical Society Interface2010354010.1149/2.F04104ifSearch in Google Scholar

Persaud K,Dodd G, Analysis of Discrimination Mechanisms in the Mammalian Olfactory System using a Model Nose. Nature, 1982; 299(5881): p. 352-355.10.1038/299352a0PersaudKDoddGAnalysis of Discrimination Mechanisms in the Mammalian Olfactory System using a Model NoseNature198229958813523557110356Open DOISearch in Google Scholar

Dusastre V, Electronic noses: Principles and applications. Nature, 1999; 402(6760): p. 351-352.DusastreVElectronic noses: Principles and applicationsNature1999402676035135210.1038/46424Search in Google Scholar

Fang X, Qi G, Guo M, Pan M, Chen YQ,Ieee, An improved integrated electronic nose for online measurement of VOCs in indoor air, in 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-7. 2005. p. 2894-2897.FangXQiGGuoMPanMChenYQIeeeAn improved integrated electronic nose for online measurement of VOCs in indoor airin 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology SocietyVols 1-7200528942897Search in Google Scholar

Zampolli S, Elmi I, Ahmed F, Passini M, Cardinali GC, Nicoletti S,Dori L, An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sensors and Actuators B-Chemical, 2004; 101(1-2): p. 39-46.10.1016/j.snb.2004.02.024ZampolliSElmiIAhmedFPassiniMCardinaliGCNicolettiSDoriLAn electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applicationsSensors and Actuators B-Chemical20041011-23946Open DOISearch in Google Scholar

Xu K, Fu C, Gao Z, Wei F, Ying Y, Xu C,Fu G, Nanomaterial-based gas sensors: A review. Instrumentation Science & Technology, 2018; 46(2): p. 115-145.10.1080/10739149.2017.1340896XuKFuCGaoZWeiFYingYXuCFuGNanomaterial-based gas sensors: A reviewInstrumentation Science & Technology2018462115145Open DOISearch in Google Scholar

Mohan VB, Lau KT, Hui D,Bhattacharyya D, Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B-Engineering, 2018; 142: p. 200-220.10.1016/j.compositesb.2018.01.013MohanVBLauKTHuiDBhattacharyyaDGraphene-based materials and their composites: A review on production, applications and product limitationsComposites Part B-Engineering2018142200220Open DOISearch in Google Scholar

Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI,Novoselov KS, Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007; 6(9): p. 652-655.10.1038/nmat196717660825SchedinFGeimAKMorozovSVHillEWBlakePKatsnelsonMINovoselovKSDetection of individual gas molecules adsorbed on grapheneNature Materials20076965265517660825Open DOISearch in Google Scholar

Cretu V, Postica V, Mishra AK, Hoppe M, Tiginyanu I, Mishra YK, Chow L, de Leeuw NH, Adelung R,Lupan O, Synthesis, characterization and DFT studies of zinc-doped copper oxide nanocrystals for gas sensing applications. Journal of Materials Chemistry A, 2016; 4(17): p. 6527-6539.10.1039/C6TA01355DCretuVPosticaVMishraAKHoppeMTiginyanuIMishraYKChowLde LeeuwNHAdelungRLupanOSynthesis, characterization and DFT studies of zinc-doped copper oxide nanocrystals for gas sensing applicationsJournal of Materials Chemistry A201641765276539Open DOISearch in Google Scholar

Li TM, Zeng W, Long HW,Wang ZC, Nanosheet-assembled hierarchical SnO2 nanostructures for efficient gas-sensing applications. Sensors and Actuators B-Chemical, 2016; 231: p. 120-128.10.1016/j.snb.2016.03.003LiTMZengWLongHWWangZCNanosheet-assembled hierarchical SnO2 nanostructures for efficient gas-sensing applicationsSensors and Actuators B-Chemical2016231120128Open DOISearch in Google Scholar

Gonzalez O, Roso S, Vilanova X,Llobet E, Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra. Beilstein Journal of Nanotechnology, 2016; 7: p. 1507-1518.10.3762/bjnano.7.14428144501GonzalezORosoSVilanovaXLlobetEEnhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedraBeilstein Journal of Nanotechnology2016715071518523867528144501Open DOISearch in Google Scholar

Yoo R, Kim J, Song MJ, Lee W,Noh JS, Nano-composite sensors composed of single-walled carbon nanotubes and polyaniline for the detection of a nerve agent simulant gas. Sensors and Actuators B-Chemical, 2015; 209: p. 444-448.10.1016/j.snb.2014.11.137YooRKimJSongMJLeeWNohJSNano-composite sensors composed of single-walled carbon nanotubes and polyaniline for the detection of a nerve agent simulant gasSensors and Actuators B-Chemical2015209444448Open DOISearch in Google Scholar

Yoosefian M, Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube. Applied Surface Science, 2017; 392: p. 225-230.10.1016/j.apsusc.2016.09.051YoosefianMPowerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotubeApplied Surface Science2017392225230Open DOISearch in Google Scholar

Dong CK, Luo HJ, Cai JQ, Wang FQ, Zhao YY,Li DT, Hydrogen sensing characteristics from carbon nanotube field emissions. Nanoscale, 2016; 8(10): p. 5599-5604.10.1039/C5NR08661B26890686DongCKLuoHJCaiJQWangFQZhaoYYLiDTHydrogen sensing characteristics from carbon nanotube field emissionsNanoscale201681055995604Open DOISearch in Google Scholar

Xiao ZH, Kong LB, Ruan SC, Li XL, Yu SJ, Li XY, Jiang Y, Yao ZJ, Ye S, Wang CH, Zhang TS, Zhou K,Li S, Recent development in nanocarbon materials for gas sensor applications. Sensors and Actuators B-Chemical, 2018; 274: p. 235-267.10.1016/j.snb.2018.07.040XiaoZHKongLBRuanSCLiXLYuSJLiXYJiangYYaoZJYeSWangCHZhangTSZhouKLiSRecent development in nanocarbon materials for gas sensor applicationsSensors and Actuators B-Chemical2018274235267Open DOISearch in Google Scholar

Wei BY, Hsu MC, Su PG, Lin HM, Wu RJ,Lai HJ, A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sensors and Actuators B-Chemical, 2004; 101(1-2): p. 81-89.10.1016/j.snb.2004.02.028WeiBYHsuMCSuPGLinHMWuRJLaiHJA novel SnO2 gas sensor doped with carbon nanotubes operating at room temperatureSensors and Actuators B-Chemical20041011-28189Open DOISearch in Google Scholar

Wang J, Liu L, Cong S-Y, Qi J-Q,Xu B-K, An enrichment method to detect low concentration formaldehyde. Sensors and Actuators B-Chemical, 2008; 134(2): p. 1010-1015.10.1016/j.snb.2008.07.010WangJLiuLCongS-YQiJ-QXuB-KAn enrichment method to detect low concentration formaldehydeSensors and Actuators B-Chemical2008134210101015Open DOISearch in Google Scholar

Bittencourt C, Felten A, Espinosa EH, Ionescu R, Llobet E, Corteig X,Pireaux JJ, WO3 films modified with functionalised multi-wall carbon nanotubes: Morphological, compositional and gas response studies. Sensors and Actuators B-Chemical, 2006; 115(1): p. 33-41.10.1016/j.snb.2005.07.067BittencourtCFeltenAEspinosaEHIonescuRLlobetECorteigXPireauxJJWO3 films modified with functionalised multi-wall carbon nanotubes: Morphological, compositional and gas response studiesSensors and Actuators B-Chemical200611513341Open DOISearch in Google Scholar

Li Y, Wang H-c,Yang M-j, n-Type gas sensing characteristics of chemically modified multi-walled carbon nanotubes and PMMA composite. Sensors and Actuators B-Chemical, 2007; 121(2): p. 496-500.10.1016/j.snb.2006.04.074LiYWangH-cYangM-jn-Type gas sensing characteristics of chemically modified multi-walled carbon nanotubes and PMMA compositeSensors and Actuators B-Chemical20071212496500Open DOISearch in Google Scholar

Liu YL, Yang HF, Yang Y, Liu ZM, Shen GL,Yu RQ, Gas sensing properties of tin dioxide coated onto multi-walled carbon nanotubes. Thin Solid Films, 2006; 497(1-2): p. 355-360.10.1016/j.tsf.2005.11.018LiuYLYangHFYangYLiuZMShenGLYuRQGas sensing properties of tin dioxide coated onto multi-walled carbon nanotubesThin Solid Films20064971-2355360Open DOISearch in Google Scholar

Penza M, Rossi R, Alvisi M, Cassano G, Signore MA, Serra E,Giorgi R, Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sensors and Actuators B-Chemical, 2008; 135(1): p. 289-297.10.1016/j.snb.2008.08.024PenzaMRossiRAlvisiMCassanoGSignoreMASerraEGiorgiRPt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensorsSensors and Actuators B-Chemical20081351289297Open DOISearch in Google Scholar

Arnold C, Harms M,Goschnick J, Air Quality Monitoring and Fire Detection With The Karlsruhe Electronic Micronose KAMINA. Ieee Sensors Journal, 2002; 2(3): p. 179-188.10.1109/JSEN.2002.800681ArnoldCHarmsMGoschnickJAir Quality Monitoring, and Fire Detection, With The Karlsruhe Electronic Micronose KAMINAIeee Sensors Journal200223179188Open DOISearch in Google Scholar

Yang L, Yin CB, Zhang ZL, Zhou JJ,Xu HH, The investigation of hydrogen gas sensing properties of SAW gas sensor based on palladium surface modified SnO2 thin film. Materials Science in Semiconductor Processing, 2017; 60: p. 16-28.10.1016/j.mssp.2016.11.042YangLYinCBZhangZLZhouJJXuHHThe investigation of hydrogen gas sensing properties of SAW gas sensor based on palladium surface modified SnO2 thin filmMaterials Science in Semiconductor Processing2017601628Open DOISearch in Google Scholar

Singh H, Raj VB, Kumar J, Durani F, Mishra M, Nimal AT,Sharma MU, SAW mono sensor for identification of harmful vapors using PCA and ANN. Process Safety and Environmental Protection, 2016; 102: p. 577-588.10.1016/j.psep.2016.05.014SinghHRajVBKumarJDuraniFMishraMNimalATSharmaMUSAW mono sensor for identification of harmful vapors using PCA and ANNProcess Safety and Environmental Protection2016102577588Open DOISearch in Google Scholar

Rana L, Gupta R, Tomar M,Gupta V, ZnO/ST-Quartz SAW resonator: An efficient NO2 gas sensor. Sensors and Actuators B-Chemical, 2017; 252: p. 840-845.10.1016/j.snb.2017.06.075RanaLGuptaRTomarMGuptaVZnO/ST-Quartz SAW resonator: An efficient NO2 gas sensorSensors and Actuators B-Chemical2017252840845Open DOISearch in Google Scholar

Staline J,Dr TS, Design and Analysis of SAW Based MEMS Gas Sensor for the Detection of Volatile Organic Gases. International Journal of Engineering Research and Applications, 2014; 4(3): p. 254-258.StalineJDrTSDesign and Analysis of SAW Based MEMS Gas Sensor for the Detection of Volatile Organic GasesInternational Journal of Engineering Research and Applications201443254258Search in Google Scholar

Wang W, Hu HL, Liu XL, He ST, Pan Y, Zhang CH,Dong C, Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A Coating. Sensors, 2016; 16(1).26751450WangWHuHLLiuXLHeSTPanYZhangCHDongCDevelopment of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A CoatingSensors201616110.3390/s16010073473210626751450Search in Google Scholar

Thomas S, Cole M, Villa-López FH,Gardner JW, High frequency surface acoustic wave resonator-based sensor for particulate matter detection. Sensors and Actuators A: Physical, 2016; 244: p. 138-145.10.1016/j.sna.2016.04.003ThomasSColeMVilla-LópezFHGardnerJWHigh frequency surface acoustic wave resonator-based sensor for particulate matter detectionSensors and Actuators A: Physical2016244138145Open DOISearch in Google Scholar

Zhou J, Li P, Zhang S, Long YC, Zhou F, Huang YP, Yang PY,Bao MH, Zeolite-modified microcantilever gas sensor for indoor air quality control. Sensors and Actuators B-Chemical, 2003; 94(3): p. 337-342.10.1016/S0925-4005(03)00369-1ZhouJLiPZhangSLongYCZhouFHuangYPYangPYBaoMHZeolite-modified microcantilever gas sensor for indoor air quality controlSensors and Actuators B-Chemical2003943337342Open DOISearch in Google Scholar

Bearzotti A, Macagnano A, Papa P, Venditti I,Zampetti E, A study of a QCM sensor based on pentacene for the detection of BTX vapors in air. Sensors and Actuators B: Chemical, 2017; 240: p. 1160-1164.10.1016/j.snb.2016.09.097BearzottiAMacagnanoAPapaPVendittiIZampettiEA study of a QCM sensor based on pentacene for the detection of BTX vapors in airSensors and Actuators B: Chemical201724011601164Open DOISearch in Google Scholar

Kumar A, Brunet J, Varenne C, Ndiaye A, Pauly A, Penza M,Alvisi M, Tetra-tert-butyl copper phthalocyanine-based QCM sensor for toluene detection in air at room temperature. Sensors and Actuators B: Chemical, 2015; 210: p. 398-407.10.1016/j.snb.2015.01.010KumarABrunetJVarenneCNdiayeAPaulyAPenzaMAlvisiMTetra-tert-butyl copper phthalocyanine-based QCM sensor for toluene detection in air at room temperatureSensors and Actuators B: Chemical2015210398407Open DOISearch in Google Scholar

Clément P, Llobet E, Lucat C,Debéda H, Use of a CNT-coated Piezoelectric Cantilever with Double Transduction As a Gas Sensor for Benzene Detection at Room Temperature. Procedia Engineering, 2014; 87: p. 708-711.10.1016/j.proeng.2014.11.636ClémentPLlobetELucatCDebédaHUse of a CNT-coated Piezoelectric Cantilever with Double Transduction As a Gas Sensor for Benzene Detection at Room TemperatureProcedia Engineering201487708711Open DOISearch in Google Scholar

Clément P, Llobet E, Lucat C,Debéda H, Gas Discrimination Using Screen-printed Piezoelectric Cantilevers Coated with Carbon Nanotubes. Procedia Engineering, 2015; 120: p. 987-992.10.1016/j.proeng.2015.08.638ClémentPLlobetELucatCDebédaHGas Discrimination Using Screen-printed Piezoelectric Cantilevers Coated with Carbon NanotubesProcedia Engineering2015120987992Open DOISearch in Google Scholar

Shi LQ, Hasegawa Y, Katsube T, Nakano M, Nakamura K,Ieee, Highly sensitive SnO2-based gas sensor for indoor air quality monitoring. Transducers ‘05, Digest of Technical Papers, Vols 1 and 2. 2005. 1203-1206.ShiLQHasegawaYKatsubeTNakanoMNakamuraKIeeeHighly sensitive SnO2-based gas sensor for indoor air quality monitoringTransducers ‘05, Digest of Technical PapersVols 1 and 2200512031206Search in Google Scholar

Lv P, Tang ZA, Yu J, Zhang FT, Wei GF, Huang ZX,Hu Y, Study on a micro-gas sensor with SnO2-NiO sensitive film for indoor formaldehyde detection. Sensors and Actuators B-Chemical, 2008; 132(1): p. 74-80.10.1016/j.snb.2008.01.018LvPTangZAYuJZhangFTWeiGFHuangZXHuYStudy on a micro-gas sensor with SnO2-NiO sensitive film for indoor formaldehyde detectionSensors and Actuators B-Chemical200813217480Open DOISearch in Google Scholar

Zhou K, Ji X, Zhang N,Zhang X, On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor. Sensors and Actuators B-Chemical, 2006; 119(2): p. 392-397.10.1016/j.snb.2005.12.038ZhouKJiXZhangNZhangXOn-line monitoring of formaldehyde in air by cataluminescence-based gas sensorSensors and Actuators B-Chemical20061192392397Open DOISearch in Google Scholar

Lee C-Y, Chiang C-M, Wang Y-H,Ma R-H, A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection. Sensors and Actuators B-Chemical, 2007; 122(2): p. 503-510.10.1016/j.snb.2006.06.018LeeC-YChiangC-MWangY-HMaR-HA self-heating gas sensor with integrated NiO thin-film for formaldehyde detectionSensors and Actuators B-Chemical20071222503510Open DOISearch in Google Scholar

Sasahara T, Kato H, Saito A, Nishimura M,Egashira M, Development of a ppb-level sensor based on catalytic combustion for total volatile organic compounds in indoor air. Sensors and Actuators B-Chemical, 2007; 126(2): p. 536-543.10.1016/j.snb.2007.04.001SasaharaTKatoHSaitoANishimuraMEgashiraMDevelopment of a ppb-level sensor based on catalytic combustion for total volatile organic compounds in indoor airSensors and Actuators B-Chemical20071262536543Open DOISearch in Google Scholar

Schwandt C, Kumar RV,Hills MP, Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide. Sensors and Actuators B: Chemical, 2018; 265: p. 27-34.10.1016/j.snb.2018.03.012SchwandtCKumarRVHillsMPSolid state electrochemical gas sensor for the quantitative determination of carbon dioxideSensors and Actuators B: Chemical20182652734Open DOISearch in Google Scholar

Menart E, Jovanovski V,Hočevar SB, Novel hydrazinium polyacrylate-based electrochemical gas sensor for formaldehyde. Sensors and Actuators B: Chemical, 2017; 238: p. 71-75.10.1016/j.snb.2016.07.042MenartEJovanovskiVHočevarSBNovel hydrazinium polyacrylate-based electrochemical gas sensor for formaldehydeSensors and Actuators B: Chemical20172387175Open DOISearch in Google Scholar

Wan H, Yin H, Lin L, Zeng X,Mason AJ, Miniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoring. Sensors and Actuators B: Chemical, 2018; 255: p. 638-646.10.1016/j.snb.2017.08.109WanHYinHLinLZengXMasonAJMiniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoringSensors and Actuators B: Chemical2018255638646573125129255341Open DOISearch in Google Scholar

Kuberský P, Syrový T, Hamáček A, Nešpůrek S,Syrová L, Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte. Sensors and Actuators B: Chemical, 2015; 209: p. 1084-1090.10.1016/j.snb.2014.12.116KuberskýPSyrovýTHamáčekANešpůrekSSyrováLTowards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyteSensors and Actuators B: Chemical201520910841090Open DOISearch in Google Scholar

Rao Z, Liu L, Xie J,Zeng Y, Development of a benzene vapour sensor utilizing chemiluminescence on Y2O3. Luminescence, 2008; 23(3): p. 163-168.10.1002/bio.102718452133RaoZLiuLXieJZengYDevelopment of a benzene vapour sensor utilizing chemiluminescence on Y2O3Luminescence200823316316818452133Open DOISearch in Google Scholar

Maruo YY, Nakamura J, Uchiyama M, Higuchi M,Izunli K, Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent. Sensors and Actuators B-Chemical, 2008; 129(2): p. 544-550.10.1016/j.snb.2007.09.002MaruoYYNakamuraJUchiyamaMHiguchiMIzunliKDevelopment of formaldehyde sensing element using porous glass impregnated with Schiff’s reagentSensors and Actuators B-Chemical20081292544550Open DOISearch in Google Scholar

Yi SH, Park YH, Han SO, Min NK, Kim ES, Ahn TH,Ieee, Novel NDIR CO2 sensor for indoor air quality monitoring. Transducers ‘05, Digest of Technical Papers, Vols 1 and 2. 2005. 1211-1214.YiSHParkYHHanSOMinNKKimESAhnTHIeeeNovel NDIR CO2 sensor for indoor air quality monitoringTransducers ‘05, Digest of Technical PapersVols 1 and 2200512111214Search in Google Scholar

Tavoli F,Alizadeh N, Optical ammonia gas sensor based on nanostructure dye-doped polypyrrole. Sensors and Actuators B-Chemical, 2013; 176: p. 761-767.10.1016/j.snb.2012.09.013TavoliFAlizadehNOptical ammonia gas sensor based on nanostructure dye-doped polypyrroleSensors and Actuators B-Chemical2013176761767Open DOISearch in Google Scholar

Burratti L, De Matteis F, Casalboni M, Francini R, Pizzoferrato R,Prosposito P, Polystyrene photonic crystals as optical sensors for volatile organic compounds. Materials Chemistry and Physics, 2018; 212: p. 274-281.10.1016/j.matchemphys.2018.03.039BurrattiLDe MatteisFCasalboniMFranciniRPizzoferratoRProspositoPPolystyrene photonic crystals as optical sensors for volatile organic compoundsMaterials Chemistry and Physics2018212274281Open DOISearch in Google Scholar

Paliwal A, Sharma A, Tomar M,Gupta V, Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sensors and Actuators B: Chemical, 2017; 250: p. 679-685.10.1016/j.snb.2017.05.064PaliwalASharmaATomarMGuptaVCarbon monoxide (CO) optical gas sensor based on ZnO thin filmsSensors and Actuators B: Chemical2017250679685Open DOISearch in Google Scholar

Subramanian M, Dhayabaran VV, Sastikumar D,Shanmugavadivel M, Development of room temperature fiber optic gas sensor using clad modified Zn3 (VO4)2. Journal of Alloys and Compounds, 2018; 750: p. 153-163.10.1016/j.jallcom.2018.02.186SubramanianMDhayabaranVVSastikumarDShanmugavadivelMDevelopment of room temperature fiber optic gas sensor using clad modified Zn3 (VO4)2Journal of Alloys and Compounds2018750153163Open DOISearch in Google Scholar

Manjula M, Karthikeyan B,Sastikumar D, Sensing characteristics of clad-modified (Ho-doped Bi2O3 nanoparticles) fibre optic gas sensor. Optical Fiber Technology, 2018; 45: p. 35-39.10.1016/j.yofte.2018.05.009ManjulaMKarthikeyanBSastikumarDSensing characteristics of clad-modified (Ho-doped Bi2O3 nanoparticles) fibre optic gas sensorOptical Fiber Technology2018453539Open DOISearch in Google Scholar

Khan MRR, Kang B-H, Yeom S-H, Kwon D-H,Kang S-W, Fiber-optic pulse width modulation sensor for low concentration VOC gas. Sensors and Actuators B: Chemical, 2013; 188: p. 689-696.10.1016/j.snb.2013.07.036KhanMRRKangB-HYeomS-HKwonD-HKangS-WFiber-optic pulse width modulation sensor for low concentration VOC gasSensors and Actuators B: Chemical2013188689696Open DOISearch in Google Scholar

Renganathan B,Ganesan AR, Fiber optic gas sensor with nanocrystalline ZnO. Optical Fiber Technology, 2014; 20(1): p. 48-52.10.1016/j.yofte.2013.11.007RenganathanBGanesanARFiber optic gas sensor with nanocrystalline ZnOOptical Fiber Technology20142014852Open DOISearch in Google Scholar

Girotti S, Ferri EN, Fumo MG,Maiolini E, Monitoring of environmental pollutants by bioluminescent bacteria. Analytica Chimica Acta, 2008; 608(1): p. 2-29.10.1016/j.aca.2007.12.00818206990GirottiSFerriENFumoMGMaioliniEMonitoring of environmental pollutants by bioluminescent bacteriaAnalytica Chimica Acta20086081229Open DOISearch in Google Scholar

Roda A, Pasini P, Mirasoli M, Michelini E,Guardigli M, Biotechnological applications of bioluminescence and chemiluminescence. Trends in Biotechnology, 2004; 22(6): p. 295-303.10.1016/j.tibtech.2004.03.01115158059RodaAPasiniPMirasoliMMicheliniEGuardigliMBiotechnological applications of bioluminescence and chemiluminescenceTrends in Biotechnology2004226295303Open DOISearch in Google Scholar

Valdman E, Valdman B, Battaglini F,Leite SGF, On-line detection of low naphthalene concentrations with a bioluminescent sensor. Process Biochemistry, 2004; 39(10): p. 1217-1222.10.1016/S0032-9592(03)00248-6ValdmanEValdmanBBattagliniFLeiteSGFOn-line detection of low naphthalene concentrations with a bioluminescent sensorProcess Biochemistry2004391012171222Open DOISearch in Google Scholar

Valdman E,Gutz IGR, Bioluminescent sensor for naphthalene in air: Cell immobilization and evaluation with a dynamic standard atmosphere generator. Sensors and Actuators B-Chemical, 2008; 133(2): p. 656-663.10.1016/j.snb.2008.03.031ValdmanEGutzIGRBioluminescent sensor for naphthalene in air: Cell immobilization and evaluation with a dynamic standard atmosphere generatorSensors and Actuators B-Chemical20081332656663Open DOISearch in Google Scholar

Werlen C, Jaspers MCM,van der Meer JR, Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Applied and Environmental Microbiology, 2004; 70(1): p. 43-51.1471162410.1128/AEM.70.1.43-51.2004WerlenCJaspersMCMvan der MeerJRMeasurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensorApplied and Environmental Microbiology2004701435132129114711624Search in Google Scholar

Eltzov E, Pavluchkov V, Burstain M,Marks R, Creation of a fiber optic based biosensor for air toxicity monitoring. Sensors & Actuators: B. Chemical, 2011; in print (SNB12864).EltzovEPavluchkovVBurstainMMarksRCreation of a fiber optic based biosensor for air toxicity monitoringSensors & Actuators: B. Chemical2011in print (SNB12864)10.1016/j.snb.2011.01.062Search in Google Scholar

Shakeel S, A., F.,Shraddha P, Bioluminescent bacteria: The sparkling hope for pollution detection. Indian Journal of Scientific Research, 2018; 8(1): p. 125-130.ShakeelSAFShraddhaPBioluminescent bacteria: The sparkling hope for pollution detectionIndian Journal of Scientific Research201881125130Search in Google Scholar

Podola B,Melkonian M, A long-term operating algal biosensor for the rapid detection of volatile toxic compounds. Journal of Applied Phycology, 2003; 15(5): p. 415-424.10.1023/A:1026051700261PodolaBMelkonianMA long-term operating algal biosensor for the rapid detection of volatile toxic compoundsJournal of Applied Phycology2003155415424Open DOISearch in Google Scholar

Podola B, Nowack ECM,Melkonian M, The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosensors and Bioelectronics, 2004; 19(10): p. 1253-1260.10.1016/j.bios.2003.11.015PodolaBNowackECMMelkonianMThe use of multiple-strain algal sensor chips for the detection and identification of volatile organic compoundsBiosensors and Bioelectronics200419101253126015046757Open DOISearch in Google Scholar

Jiang Y, Liang P, Huang X,Ren ZJ, A novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoring. Chemosphere, 2018; 203: p. 21-25.10.1016/j.chemosphere.2018.03.16929604426JiangYLiangPHuangXRenZJA novel microbial fuel cell sensor with a gas diffusion biocathode sensing element for water and air quality monitoringChemosphere2018203212529604426Open DOISearch in Google Scholar

Zhou S, Huang S, Li Y, Zhao N, Li H, Angelidaki I,Zhang Y, Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring. Talanta, 2018; 186: p. 368-371.2978437510.1016/j.talanta.2018.04.084ZhouSHuangSLiYZhaoNLiHAngelidakiIZhangYMicrobial fuel cell-based biosensor for toxic carbon monoxide monitoringTalanta201818636837129784375Search in Google Scholar

Rasinger JD, Marrazza G, Briganti F, Scozzafava A, Mascini M,Turner APF, Evaluation of an FIA operated amperometric bacterial biosensor, based on pseudomonas putida F1 for the detection of benzene, toluene, ethylbenzene, and xylenes (BTEX). Analytical Letters, 2005; 38(10): p. 1531-1547.10.1081/AL-200065793RasingerJDMarrazzaGBrigantiFScozzafavaAMasciniMTurnerAPFEvaluation of an FIA operated amperometric bacterial biosensor, based on pseudomonas putida F1 for the detection of benzene, toluene, ethylbenzene, and xylenes (BTEX)Analytical Letters2005381015311547Open DOISearch in Google Scholar

Berno E, Marcondes DFP, Gamalero SR,Eandi M, Recombinant Escherichia coli for the biomonitoring of benzene and its derivatives in the air. Ecotoxicology and Environmental Safety, 2004; 57(2): p. 118-122.10.1016/j.ecoenv.2003.10.00514759656BernoEMarcondesDFPGamaleroSREandiMRecombinant Escherichia coli for the biomonitoring of benzene and its derivatives in the airEcotoxicology and Environmental Safety200457211812214759656Open DOISearch in Google Scholar

Knopf GK, Bassi AS, Singh S,Macleod R, Biosensor for remote monitoring of airborne toxins, in Environmental Monitoring and Remediation Technologies Ii, T. VoDinh and R.L. Spellicy, Editors. 1999. p. 185-193.KnopfGKBassiASSinghSMacleodRBiosensor for remote monitoring of airborne toxins, in Environmental Monitoring and Remediation Technologies IiVoDinhT.SpellicyR.L.199918519310.1117/12.372852Search in Google Scholar

Seo J, Kato S, Tatsuma T, Chino S, Takada K,Notsu H, Biosensing of an indoor volatile organic compound on the basis of fungal growth Chemosphere, 2008; 72(9): p. 1286-1291SeoJKatoSTatsumaTChinoSTakadaKNotsuHBiosensing of an indoor volatile organic compound on the basis of fungal growth Chemosphere2008729128612910.1016/j.chemosphere.2008.04.06318555511Search in Google Scholar

Keiko A, A Method For Numerical Characterization Of Indoor Climates By A Biosensor Using A Xerophilic Fungus. Indoor Air, 1993; 3(4): p. 344-348.10.1111/j.1600-0668.1993.00018.xKeikoAA Method For Numerical Characterization Of Indoor Climates By A Biosensor Using A Xerophilic FungusIndoor Air199334344348Open DOISearch in Google Scholar

Mitsubayashi K, Nishio G, Sawai M, Kazawa E, Yoshida H, Saito T, Kudo H, Otsuka K, Takao M,Saito H, A biochemical sniffer-chip for convenient analysis of gaseous formaldehyde from timber materials. Microchimica Acta, 2008; 160(4): p. 427-433.10.1007/s00604-007-0799-7MitsubayashiKNishioGSawaiMKazawaEYoshidaHSaitoTKudoHOtsukaKTakaoMSaitoHA biochemical sniffer-chip for convenient analysis of gaseous formaldehyde from timber materialsMicrochimica Acta20081604427433Open DOISearch in Google Scholar

Shimomura T, Itoh T, Sumiya T, Mizukami F,Ono M, Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sensors and Actuators B-Chemical, 2008; 135(1): p. 268-275.10.1016/j.snb.2008.08.025ShimomuraTItohTSumiyaTMizukamiFOnoMElectrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materialsSensors and Actuators B-Chemical20081351268275Open DOISearch in Google Scholar

Sigawi S, Smutok O, Demkiv O, Gayda G, Vus B, Nitzan Y, Gonchar M,Nisnevitch M, Detection of Waterborne and Airborne Formaldehyde: From Amperometric Chemosensing to a Visual Biosensor Based on Alcohol Oxidase. Materials, 2014; 7(2): p. 1055.10.3390/ma702105528788499SigawiSSmutokODemkivOGaydaGVusBNitzanYGoncharMNisnevitchMDetection of Waterborne and Airborne Formaldehyde: From Amperometric Chemosensing to a Visual Biosensor Based on Alcohol OxidaseMaterials2014721055545309228788499Open DOISearch in Google Scholar

Vianello F, Boscolo-Chio R, Signorini S,Rigo A, On-line detection of atmospheric formaldehyde by a conductometric biosensor. Biosensors and Bioelectronics, 2007; 22(6): p. 920-925.10.1016/j.bios.2006.03.018VianelloFBoscolo-ChioRSignoriniSRigoAOn-line detection of atmospheric formaldehyde by a conductometric biosensorBiosensors and Bioelectronics200722692092516678399Open DOISearch in Google Scholar

Ray S, Panjikar S,Anand R, Design of Protein-Based Biosensors for Selective Detection of Benzene Groups of Pollutants. ACS Sensors, 2018; 3(9): p. 1632-1638.10.1021/acssensors.8b0019030084640RaySPanjikarSAnandRDesign of Protein-Based Biosensors for Selective Detection of Benzene Groups of PollutantsACS Sensors2018391632163830084640Open DOISearch in Google Scholar

Li S, Liu H, Yang G, Liu S, Liu R,Lv C, Detection of radon with biosensors based on the lead(II)-induced conformational change of aptamer HTG and malachite green fluorescence probe. Journal of Environmental Radioactivity, 2018; 195: p. 60-66.3029200810.1016/j.jenvrad.2018.09.021LiSLiuHYangGLiuSLiuRLvCDetection of radon with biosensors based on the lead(II)-induced conformational change of aptamer HTG and malachite green fluorescence probeJournal of Environmental Radioactivity2018195606630292008Search in Google Scholar

eISSN:
2564-615X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics