Open Access

Comparison of Mainstream Smoke Composition from CR20 Resin Filter and Empty-Cavity Filter Cigarettes by Headspace SPME Coupled with GC×GC TOFMS and Chemometric Analysis


Cite

A previously established method based on headspace solidphase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography (GC×GC) coupled to time-of-flight mass spectrometry (TOFMS) has been used to evaluate and compare the profiles of semi-volatile compounds present in mainstream tobacco smoke particulate matter trapped on glass fibre filters for two types of cigarettes differing only in filter design. In the first cigarette, the filter cavity contained approximately 60 mg of a weakly basic macroporous polystyrene resin cross-linked with divinyl benzene and with surface amine functionality (CR20), whereas in the second cigarette, it was empty.

Relative quantitative analysis, chemical identification, and chemical grouping allowed the use of both parametric and non-parametric analyses to identify differences in the chemical composition of the smokes from these cigarettes. The analysis demonstrated that in addition to the selective partial removal of volatile carbonyls and HCN demonstrated previously, CR20 selectively, but incompletely removed 316 compounds from the particulate phase of cigarette smoke, mainly aryl and aromatic hydrocarbons as well as other more volatile species. In contrast, the relative proportion of amines, hydroxylated aromatic compounds and less volatile species was increased in the smoke from the cigarette containing CR20 in the filter.

Our findings show that high resolution GC techniques combined with mass spectrometry and chemometric approaches are powerful tools for deconvoluting the complexity of combustion aerosols, as well as helping to identify changes in chemical composition resulting from modifications to cigarette designs. [Beitr. Tabakforsch. Int. 28 (2019) 231–249]

eISSN:
1612-9237
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
General Interest, Life Sciences, other, Physics