The Storage Efficiency of Immobilized Bradyrhizobium japonicum Strain Using Encapsulation Method

Open access

Summary

There is a growing need for new formulations of carriers with better protection for bacterial inoculum. One of the newer techniques in inoculum making is encapsulation method. With this method, the whole bacterial cells are immobilized in defined space – matrix, where the cells are protected from environmental activities before use. Encapsulation of the inoculum was performed with ionic gelation method. The alginate-based microparticles (500-600 µm) containing viable B. japonicum strain were solidified in CaCl2. The initial number of viable bacteria in every sample was 9.0 log CFU/ml. Chitosan coated particles had a higher mortality rate than non-coated particles, with 1.3 log CFU/ml in lyophilized and wet microparticles stored at room temperature. High viability of B. japonicum was registered in wet particles stored at constant −20°C for thirty days with a viability rate of 8.84 log CFU/ml.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bashan Y. (1986): Alginate beads as synthetic inoculant carriers for the slow release of bacteria that affect plant growth. App Environ Microbiol. 51: 1089-1098.

  • Bashan Y. (1998): Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv. 16: 729-770.

  • Bashan Y. Hernandez J.P. Leyva L.A. Bacilio M. (2002): Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. BiolFertil Soils 35: 359-368.

  • Cassidy M.B. Lee H. Trevors J.T. (1996): Environmental application of immobilized microbial cells: a review. J. Ind. Microbiol. 16: 79-101.

  • Catroux G. Hartman A. Revellin C. (2001): Trends in rhizobial inoculation production and use. Plant and soil 230: 21-30.

  • Crawford N.M. Kahn M. Leustek T. Long S.R. (2000): Nitrogen and sulfur. In: Biochemistry and molecular biology of plants (Buchanan B.B Gruissern W. Jones R. Eds.). American Society of Plant Physiologist Rockville pp.786-849.

  • Deaker R. Roughley R.J. Kennedy I.R. (2004): Legume seed inoculation technology – a review. Soil BiolBiochem. 36: 1275-1288.

  • Denton M.D. Pearce D.J. Ballard R.A. Hannah M.C. Mutch L.A. Norng S. (2009): A multi-site field evaluation of granular inoculants for legume nodulation. Soil BiolBiochem. 41: 2508–2516.

  • DING W. K. SHAH N.P.: An improve method of microencapsulation of probiotic bacteria for their stabiltix in acidic and bile conditions during storage. Journal of Food Science 74 (2):53-61 2009.

  • Fallik E. & Okon Y. (1996): Inoculants of Azospirillum brasilense: biomass production survival and growth promotion of Setaria italic and Zea mays. Soil BiolBiochem. 28: 123-126.

  • Gaserod O. Smidsrod O. Skjak-Brak G. (1998): Microcapsules ofalginate-chitosan—I: a quantitative study of the interaction between alginate and chitosan. Biomaterials 19: 1815-1825.

  • Ivanova E. Teunou E. Poncelet D. (2005): Alginate based macrocapsules as inoculant carriers for the production of nitrogen fixing bio fertilizers. CI&CEQ 12(1): 31-39.

  • John R.P. Tyagi R.D. Brar S.K. Surampalli R.Y. Prévost D. (2011): Bioencapsulation of microbial cells for targeted agricultural delivery. Critical Reviews in Biotechnology 31 (3): 211-226.

  • Karel S.F. Libicki S.B. Robertson C.R. (1985): The immobilization of whole cells: engineering principles. Chemical Engineering Science 40 (8): 1321-135.

  • Kim I.Y. Pusey P.L. Zhao Y. Korban S.S. Choi H. Kim K.K. (2012): Controlled release of Pantonea agglomerans E 325 for biocontrol of fire blight disease of apple. Journal of Controlled Release 161: 9-15.

  • Poncelet D. Dulieu C. Jacquot M. (2001): Description of the Support Material. In: Immobilized Cells Wijffels R.H. (Ed.). Springer Heidelberg Berlin.

  • Raafat D. Von Bargen K. Haas A. Sahl H.G. (2008): Insights in to the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 74: 3764-3773.

  • Rathore S. Desai P.M. Liew C.V. Chan L.W. Heng P.W.S. (2013): Microencapsulation of microbial cells. Journal of Food Engineering 166: 369-381.

  • Schoebitz M. Lopez M. Roldan A. (2013): Bioencapsulation of microbial inoculants for better soil-plant fertilization. A review. Agronomy for Sustainable Development 33 (4): 751-765.

  • Thompson J.A. (2013): Production and quality control of legume inoculants. In: Methods for evaluation biological nitrogen fixation Begerson F.J. (Ed.) Wiley New York.

  • Uludag H. De Vos P. Tresco P.A. (2000): Technology of mammalian cell encapsulation. Advanced Drug Delivery Reviews 42 (1-2): 29-64.

  • Vemmer M. Patel A.V. (2013): Review of encapsulation methods suitable for microbial biological control agents. Biological Control 67: 380-389.

  • Wittaya-Areekul S. Kruenate J. Prahsarn C. (2006): Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone. Int J Pharm 312 (1-2): 113-118.

  • Young C.C. Rekha P.D. Lai W.A. Arun A.B. (2006): Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol Bioeng 95: 76-83.

  • Zaeim D. Sarabi-Jamab M. Ghorani B. Kadkhodaee R. Tromp R.H. (2015): Electrospray assisted fabrication of hydrogel microcapsules by single- and double-stage procedures for encapsulation of probiotics. Food and Bioproducts Processing 102: 250-259.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 104 28
PDF Downloads 76 76 14