Open Access

Electron transport in silicon nanowires having different cross-sections

Communications in Applied and Industrial Mathematics's Cover Image
Communications in Applied and Industrial Mathematics
Special Issue on Constitutive Equations for Heat Conduction in Nanosystems and Non-equilibrium Processes. Guest Editors: Vito Antonio Cimmelli and David Jou

Cite

Transport phenomena in silicon nanowires with different cross-section are investigated using an Extended Hydrodynamic model, coupled to the Schrödinger-Poisson system. The model has been formulated by closing the moment system derived from the Boltzmann equation on the basis of the maximum entropy principle of Extended Thermodynamics, obtaining explicit closure relations for the high-order fluxes and the production terms. Scattering of electrons with acoustic and non polar optical phonons have been taken into account. The bulk mobility is evaluated for square and equilateral triangle cross-sections of the wire.

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics