Open Access

Electron transport in silicon nanowires having different cross-sections

Communications in Applied and Industrial Mathematics's Cover Image
Communications in Applied and Industrial Mathematics
Special Issue on Constitutive Equations for Heat Conduction in Nanosystems and Non-equilibrium Processes. Guest Editors: Vito Antonio Cimmelli and David Jou

Cite

1. D. Ferry, S. Goodnick, and J. Bird, Transport in nanostructures. Cambridge University Press, 2009.10.1017/CBO9780511840463Search in Google Scholar

2. R. Juhasz, N. Elfstro, and J. Linnros, Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction, Nano Letters, vol. 5, no. 2, pp. 275–280, 2005.10.1021/nl048157315794610Search in Google Scholar

3. M. Lundstrom and J. Wang, Does source-to-drain tunneling limit the ultimate scaling of mosfets?, IEDM Tech. Dig., pp. 707–710, 2002.Search in Google Scholar

4. E. Ramayya, D. Vasileska, S. Goodnick, and I. Knezevic, Electron mobility in silicon nanowires, IEEE Trans. Nanotech., vol. 6, no. 1, pp. 113–117, 2007.10.1109/TNANO.2006.888521Search in Google Scholar

5. E. Ramayya, D. Vasileska, S. Goodnick, and I. Knezevic, Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering, J. Appl. Phys., vol. 104, p. 063711, 2008.Search in Google Scholar

6. E. Ramayya and I. Knezevic, Self-consistent Poisson-Schrödinger-Monte Carlo solver: electron mobility in silicon nanowires, J. Comput. Electr., vol. 9, pp. 206–210, 2010.10.1007/s10825-010-0341-8Search in Google Scholar

7. O. Muscato, W. Wagner, and V. Di Stefano, Numerical study of the systematic error in Monte Carlo schemes for semiconductors, ESAIM: M2AN, vol. 44, no. 5, pp. 1049–1068, 2010.Search in Google Scholar

8. O. Muscato, W. Wagner, and V. Di Stefano, Properties of the steady state distribution of electrons in semiconductors, Kinetic and Related Models, vol. 4, no. 3, pp. 809–829, 2011.10.3934/krm.2011.4.809Search in Google Scholar

9. O. Muscato, V. Di Stefano, and W. Wagner, A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation, Comput. Math. with Appl., vol. 65, no. 3, pp. 520–527, 2013.10.1016/j.camwa.2012.03.100Search in Google Scholar

10. M. Lenzi, P. Palestri, E. Gnani, A. Gnudi, D. Esseni, L. Selmi, and G. Baccarani, Investigation of the transport properties of silicon nanowires using deterministic and Monte Carlo approaches to the solution of the boltzmann transport equation, IEEE Trans. Electr. Dev., vol. 55, no. 8, pp. 2086–2096, 2008.Search in Google Scholar

11. G. Ossig and F. Schuerrer, Simulation of non-equilibrium electron transport in silicon quantum wires, J. Comput. Electron., vol. 7, pp. 367–370, 2008.10.1007/s10825-008-0238-ySearch in Google Scholar

12. O. Muscato and V. Di Stefano, Hydrodynamic modeling of silicon quantum wires, J. Comput. Electron., vol. 11, no. 1, pp. 45–55, 2012.10.1007/s10825-012-0381-3Search in Google Scholar

13. V. Di Stefano and O. Muscato, Seebeck effect in silicon semiconductors, Acta Appl. Math., vol. 122, no. 1, pp. 225–238, 2012.10.1007/s10440-012-9739-6Search in Google Scholar

14. O. Muscato and V. Di Stefano, Hydrodynamic simulation of a n+ - n - n+ silicon nanowire, Contin. Mech. Thermodyn., vol. 26, pp. 197–205, 2014.10.1007/s00161-013-0296-7Search in Google Scholar

15. T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and P. Yang, Metalorganic chemical vapor deposition route to gan nanowires with triangular cross sections, Nano Letters, vol. 3, no. 8, pp. 1063–1066, 2003.Search in Google Scholar

16. G. Pennelli and M. Piotto, Fabrication and characterization of silicon nanowires with triangular cross section, J. Appl. Phys., vol. 100, p. 054507, 2006.Search in Google Scholar

17. G. Pennelli, Top down fabrication of long silicon nanowire devices by means of lateral oxidation, Microelec. Engineer., vol. 86, pp. 2139–2143, 2009.Search in Google Scholar

18. G. Liang, W. Huang, C. S. Koong, J.-S. Wang, and J. Lan, Geometry effects on thermoelectric properties of silicon nanowires based on electronic band structures, J. Appl. Phys., vol. 107, p. 014317, 2010.Search in Google Scholar

19. R. Khordad and H. Bahramiyan, Electron-phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: Parallelogram and triangle cross section, J. Appl. Phys., vol. 115, p. 124314, 2014.Search in Google Scholar

20. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended irreversible thermodynamics. Springer-Verlag, 2001.10.1007/978-3-642-56565-6Search in Google Scholar

21. O. Muscato, R. Pidatella, and M. Fischetti, Monte Carlo and hydrodynamic simulation of a one dimensional n+ − nn+ silicon diode, VLSI Design, vol. 6, no. 1-4, pp. 247–250, 1998.10.1155/1998/98910Search in Google Scholar

22. O. Muscato and V. Di Stefano, Modeling heat generation in a submicrometric n+nn+ silicon diode, J. Appl. Phys., vol. 104, no. 12, p. 124501, 2008.Search in Google Scholar

23. O. Muscato and V. Di Stefano, Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors, J. Phys.A:Math. Theor., vol. 44, no. 10, p. 105501, 2011.Search in Google Scholar

24. O. Muscato and V. Di Stefano, An energy transport model describing heat generation and conduction in silicon semiconductors, J. Stat. Phys., vol. 144, no. 1, pp. 171–197, 2011.10.1007/s10955-011-0247-2Search in Google Scholar

25. O. Muscato and V. Di Stefano, Heat generation and transport in nanoscale semiconductor devices via Monte Carlo and hydrodynamic simulations, COMPEL, vol. 30, no. 2, pp. 519–537, 2011.10.1108/03321641111101050Search in Google Scholar

26. G. Mascali and V. Romano, A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle, Math. Comp. Model., vol. 55, no. 3-4, pp. 1003–1020, 2012.Search in Google Scholar

27. V. Camiola, G. Mascali, and V. Romano, Numerical simulation of a double-gate mosfet with a subband model for semiconductors based on the maximum entropy principle, Contin. Mech.Thermodyn., vol. 24, no. 4-6, pp. 417–436, 2012.10.1007/s00161-011-0217-6Search in Google Scholar

28. W.-K. Li and S. Blinder, Solution of the Schrödinger equation for a particle in an equilateral triangle, J. Math. Phys., vol. 26, no. 11, pp. 2784–2786, 1985.Search in Google Scholar

29. S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer, 1984.10.1007/978-3-7091-8752-4Search in Google Scholar

30. C. Jacoboni, C. Canali, G. Ottaviani, and A. Quaranta, A review of some charge transport properties for silicon, Solid State Electron, vol. 20, no. 2, pp. 77–89, 1977.10.1016/0038-1101(77)90054-5Search in Google Scholar

31. O. Muscato and V. Di Stefano, Local equilibrium and off-equilibrium thermoelectric effects in silicon semiconductors, J. Appl. Phys., vol. 110, no. 9, p. 093706, 2011.Search in Google Scholar

32. O. Muscato and V. Di Stefano, Electro-thermal behaviour of a sub-micron silicon diode, Semicond. Sci. Tech., vol. 28, no. 2, p. 025021, 2013.Search in Google Scholar

33. E. Ramayya, L. Maurer, A. Davoody, and I. Knezevic, Thermoelectric properties of ultrathin silicon nanowires, Phys. Rev. B, vol. 86, no. 11, p. 115328, 2012.Search in Google Scholar

34. Z. Aksamija and I. Knezevic, Thermoelectric properties of properties of silicon nanostructures, J. Comput. Electron., vol. 9, pp. 173–179, 2010.10.1007/s10825-010-0339-2Search in Google Scholar

35. D. Jou, V. Cimmelli, and A. Sellito, Nonlocal heat transport with phonons and electrons: Application to metallic nanowires, Int. J. Heat Mass transf., vol. 55, no. 9-10, pp. 2338–2344, 2012.Search in Google Scholar

36. A. Sellito, V. Cimmelli, and D. Jou, Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires, Int. J. Heat Mass transf., vol. 57, no. 1, pp. 109–116, 2013.10.1016/j.ijheatmasstransfer.2012.10.010Search in Google Scholar

37. V. Cimmelli, A. Sellito, and D. Jou, A nonlinear thermodynamic model for a breakdown of the onsager symmetry and the efficiency of thermo-electric conversion in nanowires, Proc. Royal soc.A: Math., Phys. Eng. Sci., vol. 470, no. 2170, p. 20140265, 2014.Search in Google Scholar

38. A. Sellito and V. Cimmelli, Flux limiters in radial heat transport in silicon nanolayers, J. Heat Transfer, vol. 136, no. 7, p. 071301, 2014.Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics