Open Access

Heat-pulse propagation along nonequilibrium nanowires in thermomass theory

Communications in Applied and Industrial Mathematics's Cover Image
Communications in Applied and Industrial Mathematics
Special Issue on Constitutive Equations for Heat Conduction in Nanosystems and Non-equilibrium Processes. Guest Editors: Vito Antonio Cimmelli and David Jou

Cite

We analyze the consequences of the nonlinear terms in the heat-transport equation of the thermomass theory on heat pulses propagating in a nanowire in nonequilibrium situations. As a consequence of the temperature dependence of the speeds of propagation, in temperature ranges wherein the specific heat shows negligible variations, heat pulses will shrink (or extend) spatially, and will increase (or decrease) their average temperature when propagating along a temperature gradient. A comparison with the results predicted by a different theoretical proposal on the shape of a propagating heat pulse is made, too.

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics