Open Access

Heat-pulse propagation along nonequilibrium nanowires in thermomass theory

Communications in Applied and Industrial Mathematics's Cover Image
Communications in Applied and Industrial Mathematics
Special Issue on Constitutive Equations for Heat Conduction in Nanosystems and Non-equilibrium Processes. Guest Editors: Vito Antonio Cimmelli and David Jou

Cite

1. T. L. Hill, Thermodynamics of Small Systems. New York: Dover, 1994.Search in Google Scholar

2. D. Y. Tzou, Macro to micro-scale heat transfer. The lagging behaviour. New York: Taylor and Francis, 1997.Search in Google Scholar

3. Z. M. Zhang, Nano/Microscale heat transfer. New York: McGraw-Hill, 2007.Search in Google Scholar

4. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermodynamics. Berlin: Springer, fourth revised ed., 2010.10.1007/978-90-481-3074-0_2Search in Google Scholar

5. S. Volz (ed.), Thermal Nanosystems and Nanomaterials (Topics in Applied Physics). Berlin: Springer, 2010.10.1007/978-3-642-04258-4Search in Google Scholar

6. R. A. Guyer and J. A. Krumhansl, “Solution of the linearized phonon Boltzmann equation,” Phys. Rev., vol. 148, pp. 766–778, 1966.10.1103/PhysRev.148.766Search in Google Scholar

7. G. Chen, “Ballistic-diffusive heat-conduction equations,” Phys. Rev. Lett., vol. 86, pp. 2297–2300, 2001.Search in Google Scholar

8. M. Grmela, G. Lebon, P. C. Dauby, and M. Bousmina, “Ballistic-diffusive heat conduction at nanoscale: GENERIC approach,” Phys. Lett. A, vol. 339, pp. 237–245, 2005.10.1016/j.physleta.2005.03.048Search in Google Scholar

9. V. A. Cimmelli, A. Sellitto, and D. Jou, “Nonlocal effects and second sound in a nonequilibrium steady state,” Phys. Rev. B, vol. 79, p. 014303 (13 pages), 2009.Search in Google Scholar

10. D. Y. Tzou and Z.-Y. Guo, “Nonlocal behavior in thermal lagging,” Int. J. Thermal Sci., vol. 49, pp. 1133–1137, 2010.Search in Google Scholar

11. D. Y. Tzou, “Nonlocal behavior in phonon transport,” Int. J. Heat Mass Transfer, vol. 54, pp. 475–481, 2011.10.1016/j.ijheatmasstransfer.2010.09.022Search in Google Scholar

12. G. Lebon, H. Machrafi, M. Grmela, and C. Dubois, “An extended thermodynamic model of transient heat conduction at sub-continuum scales,” Proc.R.Soc.A, vol. 467, pp. 3241–3256, 2011.Search in Google Scholar

13. P. Ván and T. Fülöp, “Universality in heat conduction theory: weakly nonlocal thermodynamics,” Ann. Phys., vol. 524, pp. 470–478, 2012.10.1002/andp.201200042Search in Google Scholar

14. G. Lebon, “Heat conduction at micro and nanoscales: A review through the prism of Extended Irreversible Thermodynamics,” J. Non-Equilib. Thermodyn., vol. 39, pp. 35–59, 2014.10.1515/jnetdy-2013-0029Search in Google Scholar

15. V. A. Cimmelli, D. Jou, T. Ruggeri, and P. Ván, “Entropy Principle and Recent Results in Non-Equilibrium Theories,” Entropy, vol. 16, pp. 1756–1807, 2014.Search in Google Scholar

16. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, “Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics,” J. Appl. Phys., vol. 110, p. 063504 (6 pages), 2011.Search in Google Scholar

17. M. Wang, N. Yang, and Z.-Y. Guo, “Non-Fourier heat conductions in nanomaterials,” J. Appl. Phys., vol. 110, p. 064310 (7 pages), 2011.Search in Google Scholar

18. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, “General expression for entropy production in transport processes based on the thermomass model,” Phys. Rev. E, vol. 85, p. 061107 (8 pages), 2012.Search in Google Scholar

19. A. Sellitto and V. A. Cimmelli, “A continuum approach to thermomass theory,” J. Heat Trans. – T. ASME, vol. 134, p. 112402 (8 pages), 2012.Search in Google Scholar

20. B.-Y. Cao and Z.-Y. Guo, “Equation of motion of a phonon gas and non-Fourier heat conduction,” J. Appl. Phys., vol. 102, p. 053503 (6 pages), 2007.Search in Google Scholar

21. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, “Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics,” Physica E, vol. 56, pp. 256–262, 2014.10.1016/j.physe.2013.10.006Search in Google Scholar

22. I. Müller and T. Ruggeri, Rational Extended Thermodynamics. Berlin: Springer-Verlag, 1998.10.1007/978-1-4612-2210-1Search in Google Scholar

23. J. Wang and J.-S. Wang, “Carbon nanotube thermal transport: ballistic to diffusive,” Appl. Phys. Lett., vol. 88, p. 111909 (3 pages), 2006.Search in Google Scholar

24. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, and T. Shimizu, “Measuring the thermal conductivity of a single carbon nanotube,” Phys. Rev. Lett., vol. 95, p. 065502 (4 pages), 2005.Search in Google Scholar

25. D. Jou and A. Sellitto, “Focusing of heat pulses along nonequilibrium nanowires,” Phys. Lett. A, vol. 374, pp. 313–318, 2009.10.1016/j.physleta.2009.10.032Search in Google Scholar

26. Z.-Y. Guo and Q.-W. Hou, “Thermal wave based on the thermomass model,” J. Heat Trans - T. ASME, vol. 132, p. 072403 (6 pages), 2010.Search in Google Scholar

27. V. A. Cimmelli, “Different thermodynamic theories and different heat conduction laws,” J. Non-Equilib. Thermodyn., vol. 34, pp. 229–333, 2009.10.1515/JNETDY.2009.016Search in Google Scholar

28. D. Jou, A. Sellitto, and F. X. Alvarez, “Heat waves and phonon-wall collisions in nanowires,” Proc.R.Soc.A, vol. 467, pp. 2520–2533, 2011.Search in Google Scholar

29. A. Jeffrey and T. Taniuti, Nonlinear Wave Propagation. New York: Academic, 1964.Search in Google Scholar

30. B. Straughan, Heat waves. Berlin: Springer, 2011.10.1007/978-1-4614-0493-4Search in Google Scholar

31. M. T. Yin and M. L. Cohen, “Theory of lattice-dynamical properties of solids: Application to Si and Ge,” Phys. Rev. B, vol. 26, pp. 3259–3272, 1992.Search in Google Scholar

32. V. A. Cimmelli and W. Kosiński, “Nonequilibrium semi-empirical temperature in materials with thermal relaxation,” Arch. Mech., vol. 43, pp. 753–767, 1991.Search in Google Scholar

33. V. A. Cimmelli and K. Frischmuth, “Determination of material functions through second sound measurements in a hyperbolic heat conduction theory,” Mathl. Comput. Modelling, vol. 24, pp. 19–28, 1996.10.1016/S0895-7177(96)00175-6Search in Google Scholar

34. C. D. Levermore and G. C. Pomraning, “A flux-limited diffusion theory,” Astrophys. J., vol. 248, pp. 321–334, 1981.10.1086/159157Search in Google Scholar

35. A. Sellitto and V. A. Cimmelli, “Flux Limiters in Radial Heat Transport in Silicon Nanolyers,” J. Heat Trans. – T. ASME, vol. 136, p. 071301 (6 pages), 2014.Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics