Non Invasive Prenatal Diagnosis of Aneuploidy: Next Generation Sequencing or Fetal DNA Enrichment?

Open access


Current invasive procedures [amniocentesis and chorionic villus sampling (CVS)] pose a risk to mother and fetus and such diagnostic procedures are available only to high risk pregnancies limiting aneuploidy detection rate. This review seeks to highlight the necessity of investing in non invasive prenatal diagnosis (NIPD) and how NIPD would improve patient safety and detection rate as well as allowing detection earlier in pregnancy. Non invasive prenatal diagnosis can take either a proteomics approach or nucleic acid-based approach; this review focuses on the latter. Since the discovery of cell free fetal DNA (cffDNA) and fetal RNA in maternal plasma, procedures have been developed for detection for monogenic traits and for some have become well established (e.g., RHD blood group status). However, NIPD of aneuploidies remains technically challenging. This review examines currently published literature evaluating techniques and approaches that have been suggested and developed for aneuploidy detection, highlighting their advantages and limitations and areas for further research.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. NHS FASP 2010. NHS Fetal Anomaly Screening Programme Annual Report 2009-2010. Available at [ php?id=11354] Accessed on January 16 2012.

  • 2. Mujezinovic F Alfirevic Z. Procedure-related complications of amniocentesis and chorionic villous sampling. Obstet Gynecol. 2007; 110(3): 687-694.

  • 3. Go AT van Vugt JMG Oudejans CBM. Noninvasive aneuploidy detection using free fetal DNA and RNA in maternal plasma: recent progress and future possibilities. Hum Reprod Update. 2011; 17(3): 372-382.

  • 4. Hahn S Lapaire O Tercanli S Kolla V Hösli I. 2011. Determination of fetal chromosome aberrations from fetal DNA in maternal blood: has the challenge finally been met? Expert Rev Molec Med. 2011; 13; 16: e16. Available at [ articles/ PMC3087311/pdf/S1462399411001852a. pdf] Accessed on January 16 2012.

  • 5. Nicolaides KH. Screening for fetal aneuploidies at 11 to 13 weeks. Prenat Diagn. 2011; 31(1): 7-15.

  • 6. NHS 2010. When an abortion should be carried out. Available at [ Abortion/ Pages/When-should-it-be-done.aspx] Accessed on January 8 2012.

  • 7. Bischoff FZ Sinacori MK Dang DD et al. Cell-free fetal DNA and intact fetal cells in maternal blood circulation: implications for first and second trimester non-invasive prenatal diagnosis. Hum Reprod Update. 2001; 8(6): 493-500.

  • 8. Chitty LS van der Schoot CE Hahn S Avent ND. SAFE-The special non-invasive advances in fetal and neonatal evaluation network: aims and achievements. Prenat Diagn. 2009; 28(2): 83-88.

  • 9. Maddocks DG Alberry MS Attilakos G et al. The SAFE project-towards non-invasive prenatal diagnosis. Biochem Soc Transactions. 2009; 37: 460-465.

  • 10. Lo YMD Corbetta N Chamberlain PF et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997; 350(9076): 485-487.

  • 11. Lo YMD. Non-invasive prenatal diagnosis using fetal cells in maternal blood. J Clin Pathol. 1994; 47(12): 1060-1065.

  • 12. Herzenburg LA Bianchi DW Schroder J Cann HM Iverson GM. Fetal cells in the blood of pregnant women: Detection and enrichment by fluorescenceactivated cell sorting. Proc Natl Acad Sci USA. 1979; 76(3): 1453-1455.

  • 13. Avent ND Plummer ZE Madgett TE et al. Postgenomics studies and their application to non-invasive prenatal diagnosis. Semin Fetal Neonat Med. 2008; 13: 91-98.

  • 14. Wapner RJ. Invasive prenatal diagnostic techniques. Semin Perinatol. 2005; 29(6): 401-404.

  • 15. Bianchi DW Zickwolf GK Weil GJ Sylvester S DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA. 1996; 93(2): 705-708.

  • 16. Illanes S Denbow M Kailasam C Finning K Soothill PW. Early detection of cell-free fetal DNA in maternal plasma. Early Hum Dev. 2007; 83(9): 563-566.

  • 17. Lo YMD Zhang J Leung TN Lau TK Chang AM Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999; 64(1): 218-224.

  • 18. Avent ND Finning KM Martin PG Soothill PW. Prenatal determination of fetal blood group status. Vox Sang. 2000; 78(2): 155-162.

  • 19. Finning KM Martin PG Soothill PW Avent ND. Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service. Transfusion. 2002; 42(8): 1079-1085.

  • 20. Scheffer PG van der Schoot CE Page-Christiaens GCML de Haas M. Noninvasive fetal blood group genotyping of rhesus D c E and of K in alloimmunised pregnant women: evaluation of a 7 year clinical experience; Br J Obstet Gynaecol. 2011; 118(11): 1340-1348.

  • 21. Avent ND Chitty LS. Non-invasive diagnosis of fetal sex; utilisation of free fetal DNA in maternal plasma and ultrasound. Prenat Diagn. 2006; 26(7): 598-603.

  • 22. Poon LLM Leung TN Lau TK Chow KCK Lo YMD. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clin Chem. 2002; 48(1): 35-41.

  • 23. Tsui NBY Ng EKO Lo YMD. Stability of endogenous and added RNA in blood specimens serum and plasma. Clin Chem. 2002; 48(10): 1647-1653.

  • 24. Chiu RW Lui WB Cheung MC. et al. Time profile of appearance and disappearance of circulating placenta-derived mRNA in maternal plasma. Clin Chem. 2006; 52(2): 313-316.

  • 25. Ng EKO Tsui NBY Lau TK et al. mRNA of placental origin is readily detectable in maternal plasma. Proc Natl Acad Sci USA. 2003; 100(8): 4748-4753.

  • 26. Lo YMD Tsui NBY Chiu RWK et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat Med. 2007; 13(2): 218-223.

  • 27. Lo YMD. Noninvasive prenatal detection of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis: a review of the current state of the art. Br J Obstet Gynaecol. 2008; 116(2): 152-157.

  • 28. Lo YMD Lun FMF Chan KCA et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci USA. 2007; 104(32): 13116-13121.

  • 29. Chim SSC Tong YK Chiu RWK et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci USA. 2005; 102(41): 14753-14758.

  • 30. Tong YK Ding C Chiu RWK et al. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma: theoretical and empirical considerations. Clin Chem. 2006; 52(12): 2194-2202.

  • 31. Weber M Davies JJ Wittig D et al. Chromosomewide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005; 37(8): 853-62.

  • 32. Papageorgiou EA Fiegler H Rakyan V et al. Sites of Differential DNA Methylation between Placenta and Peripheral Blood: Molecular Markers for Noninvasive Prenatal Diagnosis of Aneuploidies. Am J Pathol. 2009; 174(5): 1609-1618.

  • 33. Lun FMF Chiu RWK Chan KCA et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem. 2008; 54(10): 1664-1672.

  • 34. Tong YK Jin S Chiu RWK et al. Noninvasive prenatal detection of trisomy 21 by an epigenetic-genetic chromosome-dosage approach. Clin Chem. 2010; 56(1): 90-98.

  • 35. Tsui DWY Lam YMD Lee WS et al. Systematic identification of placental epigenetic signatures for the noninvasive prenatal detection of Edward’s syndrome. PLoS One 2010; 5(11): e15069.

  • 36. Vogelstein B Kinzler KW. 1999. Digital PCR. Proc Natl Acad Sci USA. 1999; 96(16): 9236-9241.

  • 37. Zimmermann BG Grill S Holzgreve W et al. Digital PCR: a powerful new tool for noninvasive prenatal diagnosis? Prenat Diagn. 2008; 28(12): 1087-1093.

  • 38. Fan HC Quake SR. Detection of aneuploidy with digital polymerase chain reaction. Anal Chem. 2007; 79(19): 7576-7579.

  • 39. Fan HC Blumenfeld YJ Chitkara U et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci USA. 2008; 105(42): 16266-16271.

  • 40. Chen EZ Chiu RWK Sun H et al. Noninvasive prenatal diagnosis of fetal trisomy 18 and trisomy 13 by maternal plasma DNA sequencing. PLoS One 2011; 6(7): e21791.

  • 41. Ehrich M Deciu C Zwiefelhofer T et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol. 2011; 204(3): 205.e1-11.

  • 42. Chiu RWK Chan KCA Gao Y et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci USA. 2008; 105(51): 20458-20463.

  • 43. van den Oever JM Balkassmi S Verweij EJ et al. Single molecule sequencing of free DNA from maternal plasma for noninvasive trisomy 21 detection. Clin Chem. 2012; 58(4): 699-706.

  • 44. Avent ND. Refining noninvasive prenatal diagnosis with single-molecule next generation sequencing. Clin Chem. 2012; 58(4): 657-658.

  • 45. Dhallan R Au WC Mattagajasingh S et al. Methods to increase the percentage of free fetal DNA recovered from the maternal circulation. JAMA. 2004; 291(9): 1114-1119.

  • 46. Chung GTY Chiu RWK Chan KCA et al. Lack of dramatic enrichment of fetal DNA in maternal plasma by formaldehyde treatment. Clin Chem. 2005; 51(3): 655-658.

  • 47. Chinnapapagari SKR Holzgreve W Lapaire O et al. Treatment of maternal blood samples with formaldehyde does not alter the proportion of circulatory fetal nucleic acid (DNA and RNA) in maternal plasma. Clin Chem. 2005; 51(3): 652-655.

  • 48. Li Y Zimmermann B Rusterholz C et al. Size separation of circulatory DNA in maternal plasma permits ready detection of fetal DNA polymorphisms. Clin Chem. 2004; 50(6): 1002-1011.

  • 49. Chan KCA Zhang J Hui ABY et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem. 2004; 50(1): 88-92.

  • 50. Li Y Di Naro E Vitucci A et al. Detection of paternally inherited fetal point mutations for b-thalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA. 2005; 293(7): 843-849.

  • 51. Li J Wang L Mamon H et al. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med. 2008; 14(5): 579-584.

  • 52. Li J Makrigiorgos GM. COLD-PCR: a new platform for highly improved mutation detection in cancer and genetic testing. Biochem Soc Transactions. 2009; 37(2): 427-432.

  • 53. Kolialexi A Tsangaris GT Papantoniou N et al. Application of proteomics for the identification of differentially expressed protein markers for Down syndrome in maternal plasma. Prenat Diagn. 2008; 28(8): 691-698.

  • 54. Choolani M Narasimkhan K Kolla V Hahn S. Proteomic technologies for prenatal diagnostics: advances and challenges ahead. Expert Rev Proteomics. 2009; 6: 87-101.

  • 55. Tsangaris GT Karamessinis P Kolialexi A et al. Proteomic analysis of amniotic fluid in pregnancies with Down syndrome. Proteomics. 2006; 6(15): 4410-4419.

  • 56. Nagalla SR Canick JA Jacob T et al. Proteomic analysis of maternal serum in Down syndrome: identification of novel protein biomarkers. J Proteome Res. 2007; 6: 1245-1257.

  • 57. Kolla V Jenö P Moes S et al. Quantitative proteomics analysis of maternal plasma in Down syndrome pregnancies using isobaric tagging reagent (iTRAQ). J Biomed Biotechnol. 2010; 2010: 952047 [Epub 2009 Nov 5].

  • 58. Heywood WE Madgett TE Wang D et al. 2D-DIGE analysis of maternal plasma for potential biomarkers for Down syndrome. Proteome Sci. 2011; 9: 56.

  • 59. Heywood WE Mills K Wang D et al. Identification of new biomarkers for Down’s syndrome in maternal plasma. J Proteomics. 2012; in press.

  • 60. Heywood WE Wang D Madgett TE et al. The development of a peptide -SRM based tandem mass spectrometry assay for prenatal screening of Down syndrome. J Proteomics. 2012; in press.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.769
5-year IMPACT FACTOR: 0.892

CiteScore 2018: 0.66

SCImago Journal Rank (SJR) 2018: 0.274
Source Normalized Impact per Paper (SNIP) 2018: 0.372

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 407 269 7
PDF Downloads 107 76 2