Open Access

Non Invasive Prenatal Diagnosis of Aneuploidy: Next Generation Sequencing or Fetal DNA Enrichment?


Cite

1. NHS FASP, 2010. NHS Fetal Anomaly Screening Programme Annual Report 2009-2010. Available at [http://fetalanomaly.screening.nhs.uk/getdata. php?id=11354] Accessed on January 16 2012.Search in Google Scholar

2. Mujezinovic F, Alfirevic Z. Procedure-related complications of amniocentesis and chorionic villous sampling. Obstet Gynecol. 2007; 110(3): 687-694.10.1097/01.AOG.0000278820.54029.e3Search in Google Scholar

3. Go AT, van Vugt JMG, Oudejans CBM. Noninvasive aneuploidy detection using free fetal DNA and RNA in maternal plasma: recent progress and future possibilities. Hum Reprod Update. 2011; 17(3): 372-382.10.1093/humupd/dmq054Search in Google Scholar

4. Hahn S, Lapaire O, Tercanli S, Kolla V, Hösli I. 2011. Determination of fetal chromosome aberrations from fetal DNA in maternal blood: has the challenge finally been met? Expert Rev Molec Med. 2011; 13; 16: e16. Available at [http://www.ncbi.nlm.nih.gov/pmc/ articles/ PMC3087311/pdf/S1462399411001852a. pdf] Accessed on January 16 2012.10.1017/S1462399411001852Search in Google Scholar

5. Nicolaides KH. Screening for fetal aneuploidies at 11 to 13 weeks. Prenat Diagn. 2011; 31(1): 7-15.10.1002/pd.2637Search in Google Scholar

6. NHS, 2010. When an abortion should be carried out. Available at [http://www.nhs.uk/Conditions/ Abortion/ Pages/When-should-it-be-done.aspx] Accessed on January 8 2012.Search in Google Scholar

7. Bischoff FZ, Sinacori MK, Dang DD, et al. Cell-free fetal DNA and intact fetal cells in maternal blood circulation: implications for first and second trimester non-invasive prenatal diagnosis. Hum Reprod Update. 2001; 8(6): 493-500.10.1093/humupd/8.6.493Search in Google Scholar

8. Chitty LS, van der Schoot CE, Hahn S, Avent ND. SAFE-The special non-invasive advances in fetal and neonatal evaluation network: aims and achievements. Prenat Diagn. 2009; 28(2): 83-88.10.1002/pd.1929Search in Google Scholar

9. Maddocks DG, Alberry MS, Attilakos G, et al. The SAFE project-towards non-invasive prenatal diagnosis. Biochem Soc Transactions. 2009; 37: 460-465.10.1042/BST0370460Search in Google Scholar

10. Lo YMD, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997; 350(9076): 485-487.10.1016/S0140-6736(97)02174-0Search in Google Scholar

11. Lo YMD. Non-invasive prenatal diagnosis using fetal cells in maternal blood. J Clin Pathol. 1994; 47(12): 1060-1065.10.1136/jcp.47.12.10605021937876375Search in Google Scholar

12. Herzenburg LA, Bianchi DW, Schroder J, Cann HM, Iverson GM. Fetal cells in the blood of pregnant women: Detection and enrichment by fluorescenceactivated cell sorting. Proc Natl Acad Sci USA. 1979; 76(3): 1453-1455.10.1073/pnas.76.3.1453383270286330Search in Google Scholar

13. Avent ND, Plummer ZE, Madgett TE, et al. Postgenomics studies and their application to non-invasive prenatal diagnosis. Semin Fetal Neonat Med. 2008; 13: 91-98.10.1016/j.siny.2007.12.01118249591Search in Google Scholar

14. Wapner RJ. Invasive prenatal diagnostic techniques. Semin Perinatol. 2005; 29(6): 401-404.10.1053/j.semperi.2006.01.00316533654Search in Google Scholar

15. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA. 1996; 93(2): 705-708.10.1073/pnas.93.2.705401178570620Search in Google Scholar

16. Illanes S, Denbow M, Kailasam C, Finning K, Soothill PW. Early detection of cell-free fetal DNA in maternal plasma. Early Hum Dev. 2007; 83(9): 563-566.10.1016/j.earlhumdev.2006.11.00117234369Search in Google Scholar

17. Lo YMD, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999; 64(1): 218-224.10.1086/30220513777209915961Search in Google Scholar

18. Avent ND, Finning KM, Martin PG, Soothill PW. Prenatal determination of fetal blood group status. Vox Sang. 2000; 78(2): 155-162.Search in Google Scholar

19. Finning KM, Martin PG, Soothill PW, Avent ND. Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service. Transfusion. 2002; 42(8): 1079-1085.10.1046/j.1537-2995.2002.00165.x12385421Search in Google Scholar

20. Scheffer PG, van der Schoot CE, Page-Christiaens GCML, de Haas M. Noninvasive fetal blood group genotyping of rhesus D, c, E and of K in alloimmunised pregnant women: evaluation of a 7 year clinical experience; Br J Obstet Gynaecol. 2011; 118(11): 1340-1348.Search in Google Scholar

21. Avent ND, Chitty LS. Non-invasive diagnosis of fetal sex; utilisation of free fetal DNA in maternal plasma and ultrasound. Prenat Diagn. 2006; 26(7): 598-603.10.1002/pd.149316856214Search in Google Scholar

22. Poon LLM, Leung TN, Lau TK, Chow KCK, Lo YMD. Differential DNA methylation between fetus and mother as a strategy for detecting fetal DNA in maternal plasma. Clin Chem. 2002; 48(1): 35-41.10.1093/clinchem/48.1.35Search in Google Scholar

23. Tsui NBY, Ng EKO, Lo YMD. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem. 2002; 48(10): 1647-1653.10.1093/clinchem/48.10.1647Search in Google Scholar

24. Chiu RW, Lui WB, Cheung MC. et al. Time profile of appearance and disappearance of circulating placenta-derived mRNA in maternal plasma. Clin Chem. 2006; 52(2): 313-316.10.1373/clinchem.2005.05969116449214Search in Google Scholar

25. Ng EKO, Tsui NBY, Lau TK, et al. mRNA of placental origin is readily detectable in maternal plasma. Proc Natl Acad Sci USA. 2003; 100(8): 4748-4753.10.1073/pnas.063745010015362712644709Search in Google Scholar

26. Lo YMD, Tsui NBY, Chiu RWK, et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat Med. 2007; 13(2): 218-223.10.1038/nm153017206148Search in Google Scholar

27. Lo YMD. Noninvasive prenatal detection of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis: a review of the current state of the art. Br J Obstet Gynaecol. 2008; 116(2): 152-157.Search in Google Scholar

28. Lo YMD, Lun FMF, Chan KCA, et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci USA. 2007; 104(32): 13116-13121.10.1073/pnas.0705765104193492317664418Search in Google Scholar

29. Chim SSC, Tong YK, Chiu RWK, et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci USA. 2005; 102(41): 14753-14758.10.1073/pnas.0503335102125354716203989Search in Google Scholar

30. Tong YK, Ding C, Chiu RWK, et al. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma: theoretical and empirical considerations. Clin Chem. 2006; 52(12): 2194-2202.10.1373/clinchem.2006.07685117040955Search in Google Scholar

31. Weber M, Davies JJ, Wittig D, et al. Chromosomewide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005; 37(8): 853-62.10.1038/ng159816007088Search in Google Scholar

32. Papageorgiou EA, Fiegler H, Rakyan V, et al. Sites of Differential DNA Methylation between Placenta and Peripheral Blood: Molecular Markers for Noninvasive Prenatal Diagnosis of Aneuploidies. Am J Pathol. 2009; 174(5): 1609-1618.10.2353/ajpath.2009.081038267125019349366Search in Google Scholar

33. Lun FMF, Chiu RWK, Chan KCA, et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem. 2008; 54(10): 1664-1672.10.1373/clinchem.2008.11138518703764Search in Google Scholar

34. Tong YK, Jin S, Chiu RWK, et al. Noninvasive prenatal detection of trisomy 21 by an epigenetic-genetic chromosome-dosage approach. Clin Chem. 2010; 56(1): 90-98.10.1373/clinchem.2009.13411419850629Search in Google Scholar

35. Tsui DWY, Lam YMD, Lee WS, et al. Systematic identification of placental epigenetic signatures for the noninvasive prenatal detection of Edward’s syndrome. PLoS One 2010; 5(11): e15069.10.1371/journal.pone.0015069299481021152411Search in Google Scholar

36. Vogelstein B, Kinzler KW. 1999. Digital PCR. Proc Natl Acad Sci USA. 1999; 96(16): 9236-9241.Search in Google Scholar

37. Zimmermann BG, Grill S, Holzgreve W, et al. Digital PCR: a powerful new tool for noninvasive prenatal diagnosis? Prenat Diagn. 2008; 28(12): 1087-1093.10.1002/pd.215019003785Search in Google Scholar

38. Fan HC, Quake SR. Detection of aneuploidy with digital polymerase chain reaction. Anal Chem. 2007; 79(19): 7576-7579.10.1021/ac070939417715994Search in Google Scholar

39. Fan HC, Blumenfeld YJ, Chitkara U, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci USA. 2008; 105(42): 16266-16271.10.1073/pnas.0808319105256241318838674Search in Google Scholar

40. Chen EZ, Chiu RWK, Sun H, et al. Noninvasive prenatal diagnosis of fetal trisomy 18 and trisomy 13 by maternal plasma DNA sequencing. PLoS One 2011; 6(7): e21791.10.1371/journal.pone.0021791313077121755002Search in Google Scholar

41. Ehrich M, Deciu C, Zwiefelhofer T, et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol. 2011; 204(3): 205.e1-11.10.1016/j.ajog.2010.12.06021310373Search in Google Scholar

42. Chiu RWK, Chan KCA, Gao Y, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci USA. 2008; 105(51): 20458-20463.10.1073/pnas.0810641105260058019073917Search in Google Scholar

43. van den Oever JM, Balkassmi S, Verweij EJ, et al. Single molecule sequencing of free DNA from maternal plasma for noninvasive trisomy 21 detection. Clin Chem. 2012; 58(4): 699-706.10.1373/clinchem.2011.17469822278607Search in Google Scholar

44. Avent ND. Refining noninvasive prenatal diagnosis with single-molecule next generation sequencing. Clin Chem. 2012; 58(4): 657-658.10.1373/clinchem.2011.18138822300629Search in Google Scholar

45. Dhallan R, Au WC, Mattagajasingh S, et al. Methods to increase the percentage of free fetal DNA recovered from the maternal circulation. JAMA. 2004; 291(9): 1114-1119.10.1001/jama.291.9.111414996781Search in Google Scholar

46. Chung GTY, Chiu RWK, Chan KCA, et al. Lack of dramatic enrichment of fetal DNA in maternal plasma by formaldehyde treatment. Clin Chem. 2005; 51(3): 655-658.10.1373/clinchem.2004.04216815738522Search in Google Scholar

47. Chinnapapagari SKR, Holzgreve W, Lapaire O, et al. Treatment of maternal blood samples with formaldehyde does not alter the proportion of circulatory fetal nucleic acid (DNA and RNA) in maternal plasma. Clin Chem. 2005; 51(3): 652-655.10.1373/clinchem.2004.04211915738521Search in Google Scholar

48. Li Y, Zimmermann B, Rusterholz C, et al. Size separation of circulatory DNA in maternal plasma permits ready detection of fetal DNA polymorphisms. Clin Chem. 2004; 50(6): 1002-1011.10.1373/clinchem.2003.02983515073090Search in Google Scholar

49. Chan KCA, Zhang J, Hui ABY, et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem. 2004; 50(1): 88-92.10.1373/clinchem.2003.02489314709639Search in Google Scholar

50. Li Y, Di Naro E, Vitucci A, et al. Detection of paternally inherited fetal point mutations for b-thalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA. 2005; 293(7): 843-849.10.1001/jama.293.7.84315713774Search in Google Scholar

51. Li J, Wang L, Mamon H, et al. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med. 2008; 14(5): 579-584.10.1038/nm170818408729Search in Google Scholar

52. Li J, Makrigiorgos GM. COLD-PCR: a new platform for highly improved mutation detection in cancer and genetic testing. Biochem Soc Transactions. 2009; 37(2): 427-432.10.1042/BST037042719290875Search in Google Scholar

53. Kolialexi A, Tsangaris GT, Papantoniou N, et al. Application of proteomics for the identification of differentially expressed protein markers for Down syndrome in maternal plasma. Prenat Diagn. 2008; 28(8): 691-698.10.1002/pd.204018551720Search in Google Scholar

54. Choolani M, Narasimkhan K, Kolla V, Hahn S. Proteomic technologies for prenatal diagnostics: advances and challenges ahead. Expert Rev Proteomics. 2009; 6: 87-101.10.1586/14789450.6.1.8719210129Search in Google Scholar

55. Tsangaris GT, Karamessinis P, Kolialexi A, et al. Proteomic analysis of amniotic fluid in pregnancies with Down syndrome. Proteomics. 2006; 6(15): 4410-4419.10.1002/pmic.20060008516847874Search in Google Scholar

56. Nagalla SR, Canick JA, Jacob T, et al. Proteomic analysis of maternal serum in Down syndrome: identification of novel protein biomarkers. J Proteome Res. 2007; 6: 1245-1257.10.1021/pr060539h17373838Search in Google Scholar

57. Kolla V, Jenö P, Moes S, et al. Quantitative proteomics analysis of maternal plasma in Down syndrome pregnancies using isobaric tagging reagent (iTRAQ). J Biomed Biotechnol. 2010; 2010: 952047 [Epub 2009 Nov 5].Search in Google Scholar

58. Heywood WE, Madgett TE, Wang D, et al. 2D-DIGE analysis of maternal plasma for potential biomarkers for Down syndrome. Proteome Sci. 2011; 9: 56.10.1186/1477-5956-9-56318987221929753Search in Google Scholar

59. Heywood WE, Mills K, Wang D, et al. Identification of new biomarkers for Down’s syndrome in maternal plasma. J Proteomics. 2012; in press.10.1016/j.jprot.2012.03.00722456345Search in Google Scholar

60. Heywood WE, Wang D, Madgett TE, et al. The development of a peptide -SRM based tandem mass spectrometry assay for prenatal screening of Down syndrome. J Proteomics. 2012; in press. 10.1016/j.jprot.2012.03.03722543281Search in Google Scholar

ISSN:
1311-0160
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Basic Medical Science, other