Effect of the recovery duration of a repeated sprint exercise on the power output, jumping performance and lactate concentration in pre-pubescent soccer players

Open access

Summary

Study aim: The aim of the present study was to examine the effect of two different recovery durations (2 min versus 5 min) on the physiological responses (power output, stretch-shortening cycle and lactate concentration) to a 5×6 s repeated cycling sprint exercise protocol in pre-pubescent soccer players.

Materials and methods: Twelve male soccer players (age 12.23 ± 0.55 yrs, body mass 43.6 ± 5.5 kg and height 156.1 ± 5.8 cm) performed 5 × 6 s sprints on a cycle ergometer (Ergomedic 874E, Monark, Sweden) against 0.075 times their body mass resistance on two occasions within a week. In one session there was a 2 min recovery and in the other there was a 5 min recovery in a counterbalanced order. A squat jump (SJ) and a countermovement jump (CMJ) were tested before and after each trial, and the eccentric utilisation ratio (EUR) was calculated as CMJ/SJ.

Results: No significant trial × recovery interaction was observed in the participants’ peak power (p = 0.891, η2 = 0.118), mean power (p = 0.910, η2 = 0.106), SJ (p = 0.144, η2 = 0.630), CMJ (p = 0.616, η2 = 0.347) and EUR (p = 0.712, η2 = 0.295). However, a main effect of the trial on the CMJ of a large magnitude (p = 0.006, η2 = 0.862) was found, in which a higher score was recorded in the third trial than in the first trial (23.3 versus 21.8 cm). No differences were found in the lactate concentrations examined 5 min after the end of the protocol between the two recovery conditions (6.7 ± 1.8 vs. 6.0 ± 1.6 mmol · L–1, in the 2 and 5 min recovery, respectively, Cohen’s d = 0.4).

Conclusions: The duration of the passive recovery time (2 min vs. 5 min) in trials of repeated sprints did not induce important changes either to the indices of the jumping performance or to the power output in pre-pubescent participants.

1. Argus C.K., Driller M.W., Ebert T.R., Martin D.T., Halson S.L. (2013) The effects of 4 different recovery strategies on repeat sprint-cycling performance. Int. J. Sports Physiol. Perform., 8(5): 542-548.

2. Binder-Macleod S.A., Dean J.C., Ding J. (2002) Electrical stimulation factors in potentiation of human quadriceps femoris. Muscle Nerve., 25(2): 271-279. DOI: 10.1002/mus.10027.

3. Bogdanis G.C., Nevill M.E., Boobis L.H., Lakomy H.K.A., Nevill A.M. (1995) Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J. Physiol., 482(2): 467-480.

4. Bogdanis G.C., Papaspyrou A., Theos A., Maridaki M. (2007) Influence of resistive load on power output and fatigue during intermittent sprint cycling exercise in children. Eur. J. Appl. Physiol., 101(3): 313-320. DOI: 10.1007/s00421-007-0507-7.

5. Brown I.E., Loeb G.E. (1999) Measured and modeled properties of mammalian skeletal muscle. I. The effects of post-activation potentiation on the time course and velocity dependencies of force production. J. Muscle Res. Cell Motil., 20(5-6): 443-456. DOI: 10.1023/A:1005590901220.

6. Carlson J.S., Naughton G. (1994) Performance characteristics of children using various braking resistances on the wingate anaerobic test. J. Sports Med. Phys. Fitness, 34(4): 362-369.

7. Cox G., Jenkins D.G. (1994) The physiological and ventilatory responses to repeated 60 s sprints following sodium citrate ingestion. J. Sports Sci., 12(5): 469-475. DOI: 10.1080/02640419408732197.

8. Dawson B., Fitzsimons M., Ward D. (1993) The relationship of repeated sprint ability to aerobic power and performance measures of anaerobic work capacity and power. Aust. J. Sci. Med. Sport, 25(4): 88-93.

9. Dawson B., Goodman C., Lawrence S., Preen D., Polglaze T., Fitzsimons M., Fournier P. (1997) Muscle phosphocreatine repletion following single and repeated short sprint efforts. Scand. J. Med. Sci. Sports, 7(4): 206-213.

10. Doré E., Bedu M., França N.M., Diallo O., Duché P., Van Praagh E. (2000) Testing peak cycling performance: Effects of braking force during growth. Med. Sci. Sports Exerc., 32(2): 493-498.

11. Driss T., Vandewalle H. (2013) The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review. Biomed Res. Int., 2013: 589361. DOI: 10.1155/2013/589361.

12. Engel F.A., Sperlich B., Stockinger C., Hartel S., Bos K., Holmberg H.C. (2015) The kinetics of blood lactate in boys during and following a single and repeated all-out sprints of cycling are different than in men. Appl. Physiol., Nutr. Metab., 40(6): 623-631. DOI: 10.1139/apnm-2014-0370.

13. Fernandez-Santos J.R., Ruiz J.R., Cohen D.D., Gonzalez-Montesinos J.L., Castro-Piñero J. (2015) Reliability and Validity of Tests to Assess Lower-Body Muscular Power in Children. J. Strength Cond. Res., 29(8): 2277-2285. DOI:10.1519/JSC.0000000000000864.

14. Girard O., Mendez-Villanueva A., Bishop D. (2011)Repeated-sprint ability part I: Factors contributing to fatigue. Sports Med., 41(8): 673-694. DOI: 10.2165/11590550-000000000-00000.

15. Hodgson M., Docherty D., Robbins D. (2005) Post-activation potentiation: Underlying physiology and implications for motor performance. Sports Med., 35(7): 585-595. DOI:10.2165/00007256-200535070-00004.

16. Jaafar H., Rouis M., Coudrat L., Gélat T., Noakes T.D., Driss T., Eynon N. (2015) Influence of affective stimuli on leg power output and associated neuromuscular parameters during repeated high intensity cycling exercises. PLoS ONE 10(8). DOI:10.1371/journal.pone.0136330.

17. Jones B., Cooper C.E. (2014) Use of NIRS to assess effect of training on peripheral muscle oxygenation changes in elite rugby players performing repeated supramaximal cycling tests. In: Advances in Experimental Medicine and Biology, pp. 333-339.

18. Lee C.L., Cheng C.F., Lin J.C., Huang H.W. (2012) Caffeine’s effect on intermittent sprint cycling performance with different rest intervals. Eur. J. Appl. Physiol., 112(6): 2107-2116. DOI: 10.1007/s00421-011-2181-z.

19. Linthorne N.P. (2001) Analysis of standing vertical jumps using a force platform. American Journal of Physics 69(11): 1198-1204. DOI: 10.1119/1.1397460.

20. Lopez E.I.D., Smoliga J.M., Zavorsky G.S. (2014) The effect of passive versus active recovery on power output over six repeated Wingate sprints. Res. Q. Exerc. Sport, 85(4): 519-526. DOI: 10.1080/02701367.2014.961055.

21. Matsuura R., Arimitsu T., Yunoki T., Kimura T., Yamanaka R., Yano T. (2015) Effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints. Biol. Sport, 32(1): 15-20. DOI: 10.5604/20831862.1125286.

22. Mirwald R.L., Baxter-Jones A.D., Bailey D.A., Beunen G.P. (2002) An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc., 34(4): 689-694.

23. Nikolaidis P.T., Dellal A., Torres-Luque G., Ingebrigtsen J. (2015) Determinants of acceleration and maximum speed phase of repeated sprint ability in soccer players: A cross-sectional study. Sci. Sports, 30(1): e7-e16. DOI: 10.1016/j.scispo.2014.05.003.

24. Ohya T., Aramaki Y., Kitagawa K. (2013) Effect of duration of active or passive recovery on performance and muscle oxygenation during intermittent sprint cycling exercise. Int. J. Sports Med., 34(7): 616-622. DOI: 10.1055/s-0032-1331717.

25. Pearcey G.E.P., Murphy J.R., Behm D.G., Hay D.C., Power K.E., Button D.C. (2015) Neuromuscular fatigue of the knee extensors during repeated maximal intensity intermittent-sprints on a cycle ergometer. Muscle Nerve, 51(4): 569-579. DOI:10.1002/mus.24342.

26. Rakobowchuk M., Tanguay S., Burgomaster K.A., Howarth K.R., Gibala M.J., MacDonald M.J. (2008) Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am. J. Physiol. Regul, Integr, Comp, Physiol., 295(1): R236-R242. DOI: 10.1152/ajpregu.00069.2008.

27. Ratel S., Bedu M., Hennegrave A., Doré E., Duché P. (2002) Effects of age and recovery duration on peak power output during repeated cycling sprints. Int. J. Sports Med., 23(6): 397-402. DOI: 10.1055/s-2002-33737.

28. Ratel S,, Duche P,, Hennegrave A,, Van Praagh E,, Bedu M. (2003) Acid-base balance during repeated cycling sprints in boys and men. J. Appl. Physiol., 92(2): 479-485.

29. Ross W.D., Marfell-Jones M.J. (1991) Kinanthropometry. In: J.D. MacDougall, H.A. Wenger and H.J. Green (eds.) Physiological testing of the high-performance athlete. Champaign, IL: Human Kinetics.

30. Shepherd S.O., Wilson O.J., Taylor A.S., Thøgersen-Ntoumani C., Adlan A.M., Wagenmakers A.J.M., Shaw C.S. (2015) Low-volume high-intensity interval training in a gym setting improves cardiometabolic and psychological health. PLoS ONE 10(9). DOI: 10.1186/2008-2231-22-43.

31. Spencer M., Bishop D., Dawson B., Goodman C. (2005)Physiological and metabolic responses of repeated-sprint activities: Specific to field-based team sports. Sports Med., 35(12): 1025-1044. DOI: 10.2165/00007256-200535120-00003.

32. Townsend J.R., Stout J.R., Morton A.B., Jajtner A.R., Gonzalez A.M., Wells A.J., Mangine G.T., McCormack W.P., Emerson N.S., Robinson IV E.H., Hoffman J.R., Fragala M.S., Cosio-Lima L. (2013) Excess post-exercise oxygen consumption (EPOC) following multiple effort sprint and moderate aerobic exercise. Kinesiol., 45(1): 16-21.

33. Welsh A.H., Knight E.J. (2014) “Magnitude-based Inference”: A statistical review. Med. Sci. Sports Exerc., 47(4): 874-884. DOI: 10.1249/MSS.0000000000000451.

34. Whyte L.J., Gill J.M.R., Cathcart A.J. (2010) Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metab. Clin. Exp., 59(10): 1421-1428. DOI: 10.1016/j.metabol.2010.01.002.

Biomedical Human Kinetics

The Journal of University of Physical Education, Warsaw

Journal Information

SCImago Journal Rank (SJR) 2017: 0.123

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 213 39
PDF Downloads 82 82 15