Open Access

Effect of the recovery duration of a repeated sprint exercise on the power output, jumping performance and lactate concentration in pre-pubescent soccer players


Cite

1. Argus C.K., Driller M.W., Ebert T.R., Martin D.T., Halson S.L. (2013) The effects of 4 different recovery strategies on repeat sprint-cycling performance. Int. J. Sports Physiol. Perform., 8(5): 542-548.10.1123/ijspp.8.5.54223412547Search in Google Scholar

2. Binder-Macleod S.A., Dean J.C., Ding J. (2002) Electrical stimulation factors in potentiation of human quadriceps femoris. Muscle Nerve., 25(2): 271-279. DOI: 10.1002/mus.10027.10.1002/mus.1002711870697Search in Google Scholar

3. Bogdanis G.C., Nevill M.E., Boobis L.H., Lakomy H.K.A., Nevill A.M. (1995) Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J. Physiol., 482(2): 467-480.10.1113/jphysiol.1995.sp02053311577447714837Search in Google Scholar

4. Bogdanis G.C., Papaspyrou A., Theos A., Maridaki M. (2007) Influence of resistive load on power output and fatigue during intermittent sprint cycling exercise in children. Eur. J. Appl. Physiol., 101(3): 313-320. DOI: 10.1007/s00421-007-0507-7.10.1007/s00421-007-0507-717602236Search in Google Scholar

5. Brown I.E., Loeb G.E. (1999) Measured and modeled properties of mammalian skeletal muscle. I. The effects of post-activation potentiation on the time course and velocity dependencies of force production. J. Muscle Res. Cell Motil., 20(5-6): 443-456. DOI: 10.1023/A:1005590901220.10.1023/A:1005590901220Search in Google Scholar

6. Carlson J.S., Naughton G. (1994) Performance characteristics of children using various braking resistances on the wingate anaerobic test. J. Sports Med. Phys. Fitness, 34(4): 362-369.Search in Google Scholar

7. Cox G., Jenkins D.G. (1994) The physiological and ventilatory responses to repeated 60 s sprints following sodium citrate ingestion. J. Sports Sci., 12(5): 469-475. DOI: 10.1080/02640419408732197.10.1080/026404194087321977799476Search in Google Scholar

8. Dawson B., Fitzsimons M., Ward D. (1993) The relationship of repeated sprint ability to aerobic power and performance measures of anaerobic work capacity and power. Aust. J. Sci. Med. Sport, 25(4): 88-93.Search in Google Scholar

9. Dawson B., Goodman C., Lawrence S., Preen D., Polglaze T., Fitzsimons M., Fournier P. (1997) Muscle phosphocreatine repletion following single and repeated short sprint efforts. Scand. J. Med. Sci. Sports, 7(4): 206-213.10.1111/j.1600-0838.1997.tb00141.x9241025Search in Google Scholar

10. Doré E., Bedu M., França N.M., Diallo O., Duché P., Van Praagh E. (2000) Testing peak cycling performance: Effects of braking force during growth. Med. Sci. Sports Exerc., 32(2): 493-498.Search in Google Scholar

11. Driss T., Vandewalle H. (2013) The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review. Biomed Res. Int., 2013: 589361. DOI: 10.1155/2013/589361.10.1155/2013/589361377339224073413Search in Google Scholar

12. Engel F.A., Sperlich B., Stockinger C., Hartel S., Bos K., Holmberg H.C. (2015) The kinetics of blood lactate in boys during and following a single and repeated all-out sprints of cycling are different than in men. Appl. Physiol., Nutr. Metab., 40(6): 623-631. DOI: 10.1139/apnm-2014-0370.10.1139/apnm-2014-037025942632Search in Google Scholar

13. Fernandez-Santos J.R., Ruiz J.R., Cohen D.D., Gonzalez-Montesinos J.L., Castro-Piñero J. (2015) Reliability and Validity of Tests to Assess Lower-Body Muscular Power in Children. J. Strength Cond. Res., 29(8): 2277-2285. DOI:10.1519/JSC.0000000000000864.10.1519/JSC.000000000000086425647647Search in Google Scholar

14. Girard O., Mendez-Villanueva A., Bishop D. (2011)Repeated-sprint ability part I: Factors contributing to fatigue. Sports Med., 41(8): 673-694. DOI: 10.2165/11590550-000000000-00000.10.2165/11590550-000000000-0000021780851Search in Google Scholar

15. Hodgson M., Docherty D., Robbins D. (2005) Post-activation potentiation: Underlying physiology and implications for motor performance. Sports Med., 35(7): 585-595. DOI:10.2165/00007256-200535070-00004.10.2165/00007256-200535070-0000416026172Search in Google Scholar

16. Jaafar H., Rouis M., Coudrat L., Gélat T., Noakes T.D., Driss T., Eynon N. (2015) Influence of affective stimuli on leg power output and associated neuromuscular parameters during repeated high intensity cycling exercises. PLoS ONE 10(8). DOI:10.1371/journal.pone.0136330.10.1371/journal.pone.0136330454926026305334Search in Google Scholar

17. Jones B., Cooper C.E. (2014) Use of NIRS to assess effect of training on peripheral muscle oxygenation changes in elite rugby players performing repeated supramaximal cycling tests. In: Advances in Experimental Medicine and Biology, pp. 333-339.10.1007/978-1-4939-0620-8_4424729251Search in Google Scholar

18. Lee C.L., Cheng C.F., Lin J.C., Huang H.W. (2012) Caffeine’s effect on intermittent sprint cycling performance with different rest intervals. Eur. J. Appl. Physiol., 112(6): 2107-2116. DOI: 10.1007/s00421-011-2181-z.10.1007/s00421-011-2181-z21960086Search in Google Scholar

19. Linthorne N.P. (2001) Analysis of standing vertical jumps using a force platform. American Journal of Physics 69(11): 1198-1204. DOI: 10.1119/1.1397460.10.1119/1.1397460Search in Google Scholar

20. Lopez E.I.D., Smoliga J.M., Zavorsky G.S. (2014) The effect of passive versus active recovery on power output over six repeated Wingate sprints. Res. Q. Exerc. Sport, 85(4): 519-526. DOI: 10.1080/02701367.2014.961055.10.1080/02701367.2014.96105525412134Search in Google Scholar

21. Matsuura R., Arimitsu T., Yunoki T., Kimura T., Yamanaka R., Yano T. (2015) Effects of heat exposure in the absence of hyperthermia on power output during repeated cycling sprints. Biol. Sport, 32(1): 15-20. DOI: 10.5604/20831862.1125286.10.5604/20831862.1125286431459925729145Search in Google Scholar

22. Mirwald R.L., Baxter-Jones A.D., Bailey D.A., Beunen G.P. (2002) An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc., 34(4): 689-694.Search in Google Scholar

23. Nikolaidis P.T., Dellal A., Torres-Luque G., Ingebrigtsen J. (2015) Determinants of acceleration and maximum speed phase of repeated sprint ability in soccer players: A cross-sectional study. Sci. Sports, 30(1): e7-e16. DOI: 10.1016/j.scispo.2014.05.003.10.1016/j.scispo.2014.05.003Search in Google Scholar

24. Ohya T., Aramaki Y., Kitagawa K. (2013) Effect of duration of active or passive recovery on performance and muscle oxygenation during intermittent sprint cycling exercise. Int. J. Sports Med., 34(7): 616-622. DOI: 10.1055/s-0032-1331717.10.1055/s-0032-133171723325717Search in Google Scholar

25. Pearcey G.E.P., Murphy J.R., Behm D.G., Hay D.C., Power K.E., Button D.C. (2015) Neuromuscular fatigue of the knee extensors during repeated maximal intensity intermittent-sprints on a cycle ergometer. Muscle Nerve, 51(4): 569-579. DOI:10.1002/mus.24342.10.1002/mus.2434225043506Search in Google Scholar

26. Rakobowchuk M., Tanguay S., Burgomaster K.A., Howarth K.R., Gibala M.J., MacDonald M.J. (2008) Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am. J. Physiol. Regul, Integr, Comp, Physiol., 295(1): R236-R242. DOI: 10.1152/ajpregu.00069.2008.10.1152/ajpregu.00069.2008249480618434437Search in Google Scholar

27. Ratel S., Bedu M., Hennegrave A., Doré E., Duché P. (2002) Effects of age and recovery duration on peak power output during repeated cycling sprints. Int. J. Sports Med., 23(6): 397-402. DOI: 10.1055/s-2002-33737.10.1055/s-2002-3373712215957Search in Google Scholar

28. Ratel S,, Duche P,, Hennegrave A,, Van Praagh E,, Bedu M. (2003) Acid-base balance during repeated cycling sprints in boys and men. J. Appl. Physiol., 92(2): 479-485.Search in Google Scholar

29. Ross W.D., Marfell-Jones M.J. (1991) Kinanthropometry. In: J.D. MacDougall, H.A. Wenger and H.J. Green (eds.) Physiological testing of the high-performance athlete. Champaign, IL: Human Kinetics.Search in Google Scholar

30. Shepherd S.O., Wilson O.J., Taylor A.S., Thøgersen-Ntoumani C., Adlan A.M., Wagenmakers A.J.M., Shaw C.S. (2015) Low-volume high-intensity interval training in a gym setting improves cardiometabolic and psychological health. PLoS ONE 10(9). DOI: 10.1186/2008-2231-22-43.10.1186/2008-2231-22-43404592224887185Search in Google Scholar

31. Spencer M., Bishop D., Dawson B., Goodman C. (2005)Physiological and metabolic responses of repeated-sprint activities: Specific to field-based team sports. Sports Med., 35(12): 1025-1044. DOI: 10.2165/00007256-200535120-00003.10.2165/00007256-200535120-0000316336007Search in Google Scholar

32. Townsend J.R., Stout J.R., Morton A.B., Jajtner A.R., Gonzalez A.M., Wells A.J., Mangine G.T., McCormack W.P., Emerson N.S., Robinson IV E.H., Hoffman J.R., Fragala M.S., Cosio-Lima L. (2013) Excess post-exercise oxygen consumption (EPOC) following multiple effort sprint and moderate aerobic exercise. Kinesiol., 45(1): 16-21.Search in Google Scholar

33. Welsh A.H., Knight E.J. (2014) “Magnitude-based Inference”: A statistical review. Med. Sci. Sports Exerc., 47(4): 874-884. DOI: 10.1249/MSS.0000000000000451.10.1249/MSS.0000000000000451564235225051387Search in Google Scholar

34. Whyte L.J., Gill J.M.R., Cathcart A.J. (2010) Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metab. Clin. Exp., 59(10): 1421-1428. DOI: 10.1016/j.metabol.2010.01.002. 10.1016/j.metabol.2010.01.00220153487Search in Google Scholar

eISSN:
2080-2234
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Public Health, Sports and Recreation, Physical Education