Spin-Hamiltonian Parameters For CrLi3+ Doped In LiNbO3

Open access

Abstract

By using crystal field theory, the spin-Hamiltonian parameters [zero-field splitting D, the giromagnetic factors g (g|| and g) and the first excited state splitting δ(2E)] for the CrLi3+ doped in LiNbO3 have been calculated from the higher-order perturbation formulas. The method used is based on the two-spin-orbit coupling parameter model, in a cluster approach. The g parameters were also calculated as a second derivative of the energy, method implemented into ORCA computer program. The results were discussed and good agreement with experimental data was demonstrated.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] D.J. Rexford Y.M. Kim H.S. Story J. Chem. Phys. 52 (1970) 860

  • [2] G. Malovichko V. Grachev E. Kokanian O. Schirmer Phys. Rev. B 59 (1999) 9113

  • [3] T.H. Yeom Y.M. Chang C. Rudowicz S.H. Choh Solid State Commun. 87 (1993) 245

  • [4] Y.M. Chang T.H. Yeom Y.Y. Yung C. Rudowicz J. Phys.: Condens. Matter 5 (1993) 6221

  • [5] A. Kaminska J.E. Dmochowski A. Suchocki J. Garcia-Sole F. Jaque L. Asizmendi Phys. Rev. B 60 (1999) 7707

  • [6] W. Jia H. Liu R. Knutson W.M. Yen Phys. Rev. B41 (1990) 10906

  • [7] V. Grachev and G. Malovichko Phys. Rev. B 62 (2000) 7779

  • [8] G. Malovichko V. Grachev A. Hofstaetter E. Kokanian A. Scharmann and O. Schirmer Phys. Rev. B 65 (2002) 224116

  • [9] N.M. Avram C.N. Avram and M.G. Brik AIP Conference Proceedings 899 (2007) 676

  • [10] J. Mulak Z. Gajek The Effective Crystal Field Potential (Elsevier Amsterdam 2000).

  • [11] Z.-Y. Yang C. Rudowicz J. Qin Physica B 318 (2002) 188

  • [12] S.C. Abrahams and P. Marsh Acta Crystallogr. Sect. B: Struct. Sci..42 (1986) 61

  • [13] A.G. Abragam B. Bleaney Electron Paramagnetic Resonance of Transition Ions (Oxford University Press London 1970).

  • [14] M.L. Du and M.G. Zhao Phys. Stat. Solidi B 153 (1989) 249

  • [15] M.L. Du Phys. Rev. B 46 (1992) 5274

  • [16] M.L. Du and C. Rudowicz Phys. Rev. B 46 (1992) 8974

  • [17] R.M. Macfarlane J. Chem. Phys. 47 (1967) 2066

  • [18] R.M. Macfarlane Phys. Rev. B 1 (1970) 989

  • [19] W.C. Zheng and Y. Wu Spectrochim. Acta A 58 (2002) 79

  • [20] E. Clementi and C. Roetti Atomic Data and Nuclear Data Tables 14 (1974) 177

  • [21] M. Moreno M.T. Barriuso J. A. Aramburu Appl. Magn. Reson. 3 (1992) 283

  • [22] W. C. Zheng Physica B 215 (1995) 255

  • [23] H. N. Dong S. W. Wu Z. Naturforsch. A 58 (2003) 507

  • [24] S.C. Abrahams J.M. Reddy and J.L. Bernstein J. Phys.Chem. Solids 27 (1966) 997

  • [25] R.C. West CRC Handbook of Chemistry and Physics (CRC Press Boca Raton Florida 1989) 187

  • [26] J.S. Griffith The Theory of Transition-Metal Ions (Cambridge University Press London 1964)

  • [27] F. Neese Int. J. Quant.Chem. 83 (2001) 104

  • [28] ORCA- An Ab initio DFT and semiempirical SCF-MO package Version 2.8-00 September 2010.

  • [29] A. Schaefer H. Horn and R. Ahlrichs J. Chem. Phys. 97 (1992) 2571

  • [30] K. Eichkorn O. Treutler H. Ohm M. Haser and R. Ahlrichs Chem. Phys. Letters 240 (1995) 283

  • [31] K. Eichkorn F. Weigend O. Treutler R. Ahlrichs Theor. Chem. Acc. 97 (1997) 119

  • [32] T.H. Yeom Y.M. Chang C. Rudowicz S.H. Choh Solid State Commun. 87 (1993) 245

  • [33] V.G. Gracev G.I. Malovichko Sov. Phys. Solid State 27 (1985) 424.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 170 57 0
PDF Downloads 69 40 0