Studies on the heat and disinfectant resistance of a spore-forming spoilage bacterium

G. Kiskó 1 , N. Hladicekova 1 , A. Taczmann-Brückner 1 ,  and Cs. Mohácsi-Farkas 1
  • 1 Szent István University, Faculty of Food Science, Department of Microbiology and Biotechnology, 1118, Budapest


Heat resistant thermophilic spore-forming bacteria, such as Aeribacillus (A.) pallidus, may contaminate the surfaces in food facilities resulting food spoilage of the products. The aim of this work was to determine the heat and disinfectant resistance of an A. pallidus strain that was isolated from a canning factory environment. Compared to other heat-resistant spore-forming bacteria, it did not prove to be very resistant to heat with a D10-values of A. pallidus from 12.2 min to 2.4 min (at 102 °C and at 110 °C), with a calculated z-value of 11.6 °C. Not only spores but vegetative cells showed resistance against all investigated disinfectants.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] S. S. Bae, J. H. Lee, S. J. Kim, Bacillus alveayuensis sp. nov., a thermophilic bacterium isolated from deep-sea sediments of the Ayu Trough. International Journal of Systematic and Evolutionary Microbiology, 55. (2005) 1211–1215.

  • [2] A. O. Belduz, S. Dulger, Z. Demirbag, Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. International Journal of Systematic and Evolutionary Microbiology, 53. (2003) 1315–1320.

  • [3] C. B. Denny, Thermophilic organisms involved in food spoilage: Introduction. Journal of Food Protection, 44. (1981) 144–145.

  • [4] F. E. Feeherry, D. T. Munsey, D. B. Rowley, Thermal inactivation and injury of Bacillus stearothermophilus spores. Applied and Environmental Microbiology, 53. 2. (1987) 365–370.

  • [5] S. Flint, J. Palmer, K. Bloemen, J. Brooks, R. Crawford, The growth of Bacillus stearothermophilus on stainless steel. Journal of Applied Microbiology, 90. (2001) 151–157.

  • [6] J. Guan, M. Chan, B. W. Brooks, L. Rohonczy, Influence of temperature and organic load on chemical disinfection of Geobacillus steareothermophilus spores, a surrogate for Bacillus anthracis. Canadian Journal of Veterinary Research, 77. (2013) 100–104.

  • [7] K. Iida et al., Paenibacillus motobuensis sp. nov., isolated from a composting machine utilizing soil from Motobu-town, Okinawa, Japan. International Journal of Systematic and Evolutionary Microbiology, 55. (2005) 1811–1816.

  • [8] T. Kilic et al., Biofilm characteristics and evaluation of the sanitation procedures of thermophilic Aeribacillus pallidus E334 biofilms. Biofouling, 33. 4. (2017) 352–367.

  • [9] M. López, I. González, S. Condón, A. Bernardo, Effect of pH heating medium on the thermal resistance of Bacillus stearothermophilus spores. International Journal of Food Microbiology, 28. (1996) 405–410.

  • [10] T. L. Maugeri, C. Gugliandolo, D. Caccamo, E. Stackebrandt, A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents. Systematic and Applied Microbiology, 24. (2001) 572–587.

  • [11] T. J. Rahman, R. Marchant, I. M. Banat, Distribution and molecular investigation of highly thermophilic bacteria associated with cool soil environments. Biochemical Society Transactions, 32. (2004) 209–213.

  • [12] P. Scheldeman, L. Herman, S. Foster, M. Heyndrickx, Bacillus sporothermodurans and other highly heat-resistant spore formers in milk. Journal of Applied Microbiology, 101. (2006) 542–555.

  • [13] A. D. Warth, Relationship between the heat resistance of spores and the optimum and maximum growth temperatures of Bacillus species. Journal of Bacteriology, 134. (1978) 699–705.


Journal + Issues