Considerations over the floating speed of a particle in vacuum pneumatic conveying sytems in flour milling

Open access

Abstract

The present paper is a theoretical study aiming for to assess the influence of the different factors such as deviation from the spherical form of a particle, specific mass load of the pneumatic conveying pipe and the report between the particle diameter and the pipe diameter, over the floating speed of a particle. For a non-spherical particle, the Magnus force is affecting the floating speed of the given particle by increasing or decreasing it. The equation deducted within the present study, describes the movement of a particle or a fluid swirl under the resultant force with emphasis on the evaluation of the nature and magnitude of the Magnus force. The same Magnus Force explains the movement of the swirls in fluids, as for the wind swirls (hurricane) or water swirls. The next part of the study relate the report between the particle diameter and the pipe diameter as well as the specific loads of the pipe, to the same floating speed. A differentiation in denominating the floating speed is proposed as well as that for the non-spherical particle the floating speed should be a domain, rather than a single value.

1. Gerecke K. H. (1991). Technische Werte der Getraideverarbeitung und Futtermitteltechnick – Teil 3: Fordertechnick. Detmold, Germany: Verlag Moritz – Schafer

2. Meissner, W. (2008). Fordertechnick in Silo und Muhle. Agrimedia Gmbh, Handbuch Mehl – und Schalmullerei (pp. 61-92). Clenze, Germany: Erling Verlag GmbH & Co.

3. Costin, I. (1983). Tehnologii de Prelucrare a Cerealelor in Industria Moraritului. Bucuresti: Editura Tehnica

4. Klinzing, G. (2009). Historical Review of Pneumatic Conveying and Solids Processing World Wide. Pittsburgh AIChE Paper, University of Pittsburgh, Retrieved November 2012: http://www.engineering.pitt.edu/GeorgeKlinzing/

5. Bulat, A. (1962). Instalatii de Transport Pneumatic. Bucuresti: Editura Tehnica

6. Klinzing G. E., Rizk F., Marcus R. & Leung L.S. (2010). Pneumatic Conveying of Solids – A Theoretical and Practical Approach, third edition. London, England: Springer Dordrecht Heidelberg London.

7. Tanase, T (2012). Cercetari Privind Eficientizarea Transportului Pneumatic in Industria Moraritului. Sibiu: Universitatea “Lucian Blaga” (MECTS, 6149/07.11.2012), PhD thesis

8. Tănase, T. (2012). Defining of the limit condition for the in-vacuum dilute phase pneumatic conveying systems – Clogging Constant. Acta Universitatis Cibiniensis, series E: Food Technology, Vol. XVI, no. 2, ISSN 1221-4973, 33-42

9. Eck, B. (2003). Ventilatoren. Entwurf un Betrieb der Radial-, Axial- und Querstromventilatoren. Berlin: Verlag Springer

10. Tănase, T. (2014). Regime mixing ratio for the in-vacuum dilute phase pneumatic conveying systems. Acta Universitatis Cibiniensis, series E: Food Technology, Vol. XVIII, no. 1, ISSN 1221-4973, 33-46, Universitatea “Lucian Blaga”, Sibiu, 2014

11. Gross, Herbert (2012). Part I: Vector Arithmetic | MIT Calculus Revisited: Multivariable Calculus, Published on Mar 12, 2012, Retrieved August 2015, http://ocw.mit.edu/RES18-007F11

12. Florescu, I. (2007). Mecanica Fluidelor. Note de curs pentru uzul studentilor. Bacau: Editura Alma Mater

13. Nedeff V., Mosnegutu E., Panainte M., Ristea M., Lazar G., Scurtu D., Ciobanu B., Timofte A., Toma S., Agop M., (2012). Dynamics in the boundary layer of a flat particle. Powder Technology, Volume 221 (2012), 312-317

14. Gavrila, L. (2000). Fenomene de transfer. Vol 1. Transfer de impuls. Bacau: Editura Alma Mater

Acta Universitatis Cibiniensis. Series E: Food Technology

The Journal of „Lucian Blaga“ University of Sibiu

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 224 192 25
PDF Downloads 93 84 8