Accuracy of Genomic-Polygenic and Polygenic Breeding Values for Age at First Calving and Milk Yield in Thai Multibreed Dairy Cattle

Open access

Abstract

Single-nucleotide polymorphisms (SNPs) have been used in genomic prediction and shown to increase prediction accuracy and selection responses for economic traits in dairy cattle. The successful report in genomic prediction for improving age at first calving (AFC) and 305-d milk yield (MY) in multibreed dairy population is limited. Therefore, the objective of this research was to compare estimates of variance components, genetic parameters, and prediction accuracies for AFC and MY using a genomic-polygenic model (GPM) and a polygenic model (PM). The AFC and MY records of 9,106 first-lactating multibreed dairy cows, calved between 1991 and 2014, were collected from 1,012 Thai dairy farms. The SNP genotyped individuals were selected from cows that had completed pedigree and phenotypes information. The total genomic DNA samples of 2,661 dairy cattle were genotyped using various GeneSeek Genomic Profiler low-density bead chips (9K, 20K, and 80K). The 2-trait GPM and PM contained herd-year-season and heterosis as fixed effects, and animal additive genetic and residual as random effects. Variance components and genetic parameters were estimated using the procedure of average information-restricted maximum likelihood (AI-REML). Estimates of additive genetic variance components and heritabilities from GPM were higher than PM for AFC and MY. Correlations between AFC and MY were near zero for both models. Mean EBV accuracies were higher for GPM (32.95% for AFC and 38.24% for MY) than for PM (32.65% for AFC, and 32.99% for MY). Mean sire EBV accuracies were higher for GPM (31.35% for AFC and 36.25% for MY) than for PM (28.37% for AFC and 28.80% for MY). Thus, the GPM should be considered the model of choice to increase accuracy of genetic predictions for AFC and MY in the Thai multibreed dairy population.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aguilar I. Misztal I. Johnson D.L. Legarra A. Tsuruta S. Lawlor T.J. (2010). Hot topic: a unified approach to utilize phenotypic full pedigree and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 93: 743–752.

  • Bauer J. Vostrý L. Přibyl J. Svitáková A. Zavadilová L. (2014). Approximation of reliability of single-step genomic breeding values for dairy cattle in the Czech Republic. Anim. Sci. Pap. Rep. 32: 301–306.

  • Bauer J. Přibyl J. Vostrý L. (2015). Short communication: reliability of single-step genomic BLUP breeding values by multi-trait test-day model analysis. J. Dairy Sci. 98: 4999–5003.

  • Bohlouli M. Alijani S. Javaremi A.N. König S. Yin T. (2017). Genomic prediction by considering genotype × environment interaction using different genomic architectures. Ann. Anim. Sci. 17: 683–701.

  • Dairy Farming Promotion Organization (2017). DPO sire and dam summary 2017. Ministry of Agriculture and Cooperation Bangkok Thailand. pp. 1–106.

  • De Roos A.P.W. Schrooten C. Mullaart E. Van Der Beek S. De Jong G. Voskamp W. (2009). Genomic selection at CRV. Proc. Interbull Technical Workshop – genomic information in genetic evaluation Uppsala Sweden. pp. 47–50.

  • De Roos A.P.W. Schrooten C. Veerkamp R.F. Van Arendonk J.A.M. (2011). Effects of genomic selection on genetic improvement inbreeding and merit of young versus proven bulls. J. Dairy Sci. 94: 1559–1567.

  • Department of Livestock Development (2017). DLD dairy sire summary 2017. Bureau of Biotechnology in Livestock Production Department of Livestock Development Bangkok Thailand. pp. 1–87.

  • Elzo M.A. Mateescu R.G. Johnson D.D. Scheffler T.L. Scheffler J.M. Carr C. Rae D.O. Wasdin J.G. Driver M.D. Driver J.D. (2017). Genomic-polygenic and polygenic predictions for nine ultrasound and carcass traits in Angus-Brahman multibreed cattle using three sets of genotypes. Livest. Sci. 202: 58–66.

  • Erbe M. Hayes B.J. Matukumalli L.K. Goswami S. Bowman P.J. Reich C.M. Mason B.A. Goddard M.E. (2012). Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J. Dairy Sci. 95: 4114–4129.

  • Gao H. Christensen O.F. Madsen P. Nielsen U.S. Zhang Y. Lund M.S. Su G. (2012). Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population. Genet. Sel. Evol. 44: 1–8.

  • Gebreyohannes G. Koonawootrittriron S. Elzo M.A. Suwanasopee T. (2013). Variance components and genetic parameters for milk production and lactation pattern in an Ethiopian multibreed dairy cattle population. Asian-Aust. J. Anim. Sci. 26: 1237–1246.

  • Goddard M. (2009). Genomic selection: prediction of accuracy and maximization of long term response. Genetica 136: 245–257.

  • Harris B.L. Johnson D.L. Spelman R.J. (2008). Genomic selection in New Zealand and the implications for national genetic evaluation. Proc. Interbull Meeting Niagara Falls Canada.

  • Hayes B.J. Bowman P.J. Chamberlain A.C. Goddard M.E. (2009 a). Invited review: Genomic selection in dairy cattle: Progress and challenges. J. Dairy Sci. 92: 433–443.

  • Hayes B.J. Bowman P.J. Chamberlain A.C. Verbyla K. Goddard M.E. (2009 b). Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet. Sel. Evol. 41: 51.

  • Jattawa D. Koonawootrittriron S. Elzo M.A. Suwanasopee T. (2012). Somatic cells count and its genetic association with milk yield in dairy cattle raised under Thai tropical environmental conditions. Asian-Aust. J. Anim. Sci. 25: 1216–1222.

  • Jattawa D. Elzo M.A. Koonawootrittriron S. Suwanasopee T. (2015). Comparison of genetic evaluations for milk yield and fat yield using a polygenic model and three genomic-polygenic models with different sets of SNP genotypes in Thai multibreed dairy cattle. Livest. Sci. 181: 58–64.

  • Karoui S. Carabaño M.J. Díaz C. Legarra A. (2012). Joint genomic evaluation of French dairy cattle breeds using multiple-trait models. Genet. Sel. Evol. 44: 39.

  • Konkruea T. Koonawootrittriron S. Elzo M.A. Suwanasopee T. (2017). Genetic parameters and trends for daughters of imported and Thai Holstein sires for age at first calving and milk yield. Agric. Nat. Res. 51: 420–424.

  • Koonawootrittriron S. Elzo M.A. Tumwasorn S. Thongprapi T. (2006). Age at first calving of dairy cattle in a multibreed population of Thailand. Proc. 44th Kasetsart University Annual Conference (Animals and Veterinary Medicine). Kasetsart University Bangkok Thailand.

  • Koonawootrittriron S. Elzo M.A. Thongprapi T. (2009). Genetic trends in a Holstein × other breeds multibreed dairy population in central Thailand. Livest. Sci. 122: 186–192.

  • Legarra A. Aguilar I. Misztal I. (2009). A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 92: 4656–4663.

  • Meuwissen T.H.E. Hayes B.J. Goddard M.E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819–1829.

  • Meyer K. Houle D. (2013). Sampling based approximation of confidence intervals for functions of genetic covariance matrices. Proc. Assoc. Advmt. Anim. Breed. Genet. 20: 523–526.

  • Misztal I. Tsuruta S. Strabel T. Auvray B. Druet T. Lee D.H. (2002). BLUPF90 and related programs (BGF90). Proc. 7th World Congress on Genetic Applied to Livestock Production. Montpellier France.

  • Moser G. Khatkar M.S. Hayes B.J. Raadsma H.W. (2010). Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers. Genet. Sel. Evol. 42: 37.

  • Mulder H.A. Calus M.P.L. Druet T. Schrooten C. (2012). Imputation of genotypes with low-density chips and its effect on reliability of direct genomic value in Dutch Holstein cattle. J. Dairy Sci. 95: 876–889.

  • Přibyl J. Bauer J. Pešek P. Přibylová J. Vostrý L. Zavadilová L. (2014). Domestic and Interbull information in the single-step genomic evaluation of Holstein milk production. Czech J. Anim. Sci. 59: 409–415.

  • Rhone J.A. Koonawootrittriron S. Elzo M.A. (2008). Factors affecting milk yield milk fat bacterial score and bulk tank somatic cell count of dairy farms in the central region of Thailand. Trop. Anim. Health Prod. 40: 147–153.

  • Rodríguez-Ramilo S.T. García-Cortés L.A. González-Recio Ó. (2014). Combining genomic and genealogical information in a reproducing kernel Hilbert spaces regression model for genome-enabled predictions in dairy cattle. PLoS ONE 9: e93424.

  • Sarakul M. Koonawootrittriron S. Elzo M.A. Suwanasopee T. (2011). Factors influencing genetic change for milk yield within farm in Central Thailand. Asian-Aust. J. Anim. Sci. 24: 1031–1040.

  • Sargolzaei M. Chesnais J.P. Schenkel F.S. (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics 15: 478.

  • Schaeffer L.R. (2006). Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet. 123: 218–223.

  • Schenkel F.S. Sargolzaei M. Kistemaker G. Jansen G.B. Sullivan P. Van Doormaal B.J. Van Raden P.M. Wiggans G.R. (2009). Reliability of genomic evaluation of Holstein cattle in Canada. Proc. Interbull International Workshop Uppsala Sweden. pp. 51–58.

  • Su G. Madsen P. Nielsen U.S. Mäntysaari E.A. Aamand G.P. Christensen O.F. Lund M.S. (2012). Genomic prediction for Nordic Red cattle using one-step and selection index blending. J. Dairy Sci. 95: 909–917.

  • Thai Meteorological Department (2010). The Thai Meteorological Department: Climate of Thailand. Available Source: http://www.tmd.go.th/info/climate_of_thailand-2524-2553.pdf 18 July 2016.

  • Thomasen J.R. Guldbrandtsen B. Su G. Brøndum R.F. Lund M.S. (2012). Reliabilities of genomic estimated breeding values in Danish Jersey. Animal 6: 789–796.

  • Tsuruta S. (2014). Average Information REML with several options including EM-REML and heterogeneous residual variances. Available Source: http://nce.ads.uga.edu/wiki/doku.php?id=application_programs 20 June 2016.

  • Van Doormaal B.J. Kistemaker G.J. Sullivan P.G. Sargolzaei M. Schenkel F.S. (2009). Canadian implementation of genomic evaluations. Proc. Interbull International Workshop Uppsala Sweden. pp. 214–218.

  • Van Raden P.M. (2008). Efficient methods to compute genomic predictions. J. Dairy Sci. 91: 4414–4423.

  • Van Raden P.M. Van Tassell C.P. Wiggans G.R. Sonstegard T.S. Schnabel R.D. Taylor J.F. Schenkel F. (2009). Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 92: 16–24.

  • Van Raden P.M. O’ Connell J.R. Wiggans G.R. Weigel K.A. (2011). Genomic evaluations with many more genotypes. Genet. Sel. Evol. 43: 10.

  • Wiggans G.R. Van Raden P.M. Cooper T.A. (2011). The genomic evaluation system in the United States: past present future. J. Dairy Sci. 94: 3202–3211.

  • Yaemkong S. Koonawootrittriron S. Elzo M.A. Suwanasopee T. (2010). Effect of experience education record keeping labor and decision making on monthly milk yield and revenue of dairy farms supported by a private organization in Central Thailand. Asian-Aust. J. Anim. Sci. 23: 814–824.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.515
5-year IMPACT FACTOR: 1.246

CiteScore 2018: 1.4

SCImago Journal Rank (SJR) 2018: 0.509
Source Normalized Impact per Paper (SNIP) 2018: 0.869

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 172 172 16
PDF Downloads 143 143 20