Open Access

Accuracy of Genomic-Polygenic and Polygenic Breeding Values for Age at First Calving and Milk Yield in Thai Multibreed Dairy Cattle


Cite

Aguilar I., Misztal I., Johnson D.L., Legarra A., Tsuruta S., Lawlor T.J. (2010). Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci., 93: 743–752.Search in Google Scholar

Bauer J., Vostrý L., Přibyl J., Svitáková A., Zavadilová L. (2014). Approximation of reliability of single-step genomic breeding values for dairy cattle in the Czech Republic. Anim. Sci. Pap. Rep., 32: 301–306.Search in Google Scholar

Bauer J., Přibyl J., Vostrý L. (2015). Short communication: reliability of single-step genomic BLUP breeding values by multi-trait test-day model analysis. J. Dairy Sci., 98: 4999–5003.Search in Google Scholar

Bohlouli M., Alijani S., Javaremi A.N., König S., Yin T. (2017). Genomic prediction by considering genotype × environment interaction using different genomic architectures. Ann. Anim. Sci., 17: 683–701.Search in Google Scholar

Dairy Farming Promotion Organization (2017). DPO sire and dam summary 2017. Ministry of Agriculture and Cooperation, Bangkok, Thailand. pp. 1–106.Search in Google Scholar

De Roos A.P.W., Schrooten C., Mullaart E., Van Der Beek S., De Jong G., Voskamp W. (2009). Genomic selection at CRV. Proc. Interbull Technical Workshop – genomic information in genetic evaluation, Uppsala, Sweden. pp. 47–50.Search in Google Scholar

De Roos A.P.W., Schrooten C., Veerkamp R.F., Van Arendonk J.A.M. (2011). Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls. J. Dairy Sci., 94: 1559–1567.Search in Google Scholar

Department of Livestock Development (2017). DLD dairy sire summary 2017. Bureau of Biotechnology in Livestock Production Department of Livestock Development, Bangkok, Thailand. pp. 1–87.Search in Google Scholar

Elzo M.A., Mateescu R.G., Johnson D.D., Scheffler T.L., Scheffler J.M., Carr C., Rae D.O., Wasdin J.G., Driver M.D., Driver J.D. (2017). Genomic-polygenic and polygenic predictions for nine ultrasound and carcass traits in Angus-Brahman multibreed cattle using three sets of genotypes. Livest. Sci., 202: 58–66.Search in Google Scholar

Erbe M., Hayes B.J., Matukumalli L.K., Goswami S., Bowman P.J., Reich C.M., Mason B.A., Goddard M.E. (2012). Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. J. Dairy Sci., 95: 4114–4129.Search in Google Scholar

Gao H., Christensen O.F., Madsen P., Nielsen U.S., Zhang Y., Lund M.S., Su G. (2012). Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population. Genet. Sel. Evol., 44: 1–8.Search in Google Scholar

Gebreyohannes G., Koonawootrittriron S., Elzo M.A., Suwanasopee T. (2013). Variance components and genetic parameters for milk production and lactation pattern in an Ethiopian multibreed dairy cattle population. Asian-Aust. J. Anim. Sci., 26: 1237–1246.Search in Google Scholar

Goddard M. (2009). Genomic selection: prediction of accuracy and maximization of long term response. Genetica, 136: 245–257.Search in Google Scholar

Harris B.L., Johnson D.L., Spelman R.J. (2008). Genomic selection in New Zealand and the implications for national genetic evaluation. Proc. Interbull Meeting, Niagara Falls, Canada.Search in Google Scholar

Hayes B.J., Bowman P.J., Chamberlain A.C., Goddard M.E. (2009 a). Invited review: Genomic selection in dairy cattle: Progress and challenges. J. Dairy Sci., 92: 433–443.10.3168/jds.2008-164619164653Search in Google Scholar

Hayes B.J., Bowman P.J., Chamberlain A.C., Verbyla K., Goddard M.E. (2009 b). Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet. Sel. Evol., 41: 51.10.1186/1297-9686-41-51279175019930712Search in Google Scholar

Jattawa D., Koonawootrittriron S., Elzo M.A., Suwanasopee T. (2012). Somatic cells count and its genetic association with milk yield in dairy cattle raised under Thai tropical environmental conditions. Asian-Aust. J. Anim. Sci., 25: 1216–1222.Search in Google Scholar

Jattawa D., Elzo M.A., Koonawootrittriron S., Suwanasopee T. (2015). Comparison of genetic evaluations for milk yield and fat yield using a polygenic model and three genomic-polygenic models with different sets of SNP genotypes in Thai multibreed dairy cattle. Livest. Sci., 181: 58–64.Search in Google Scholar

Karoui S., Carabaño M.J., Díaz C., Legarra A. (2012). Joint genomic evaluation of French dairy cattle breeds using multiple-trait models. Genet. Sel. Evol., 44: 39.Search in Google Scholar

Konkruea T., Koonawootrittriron S., Elzo M.A., Suwanasopee T. (2017). Genetic parameters and trends for daughters of imported and Thai Holstein sires for age at first calving and milk yield. Agric. Nat. Res., 51: 420–424.Search in Google Scholar

Koonawootrittriron S., Elzo M.A., Tumwasorn S., Thongprapi T. (2006). Age at first calving of dairy cattle in a multibreed population of Thailand. Proc. 44th Kasetsart University Annual Conference (Animals and Veterinary Medicine). Kasetsart University, Bangkok, Thailand.Search in Google Scholar

Koonawootrittriron S., Elzo M.A., Thongprapi T. (2009). Genetic trends in a Holstein × other breeds multibreed dairy population in central Thailand. Livest. Sci., 122: 186–192.Search in Google Scholar

Legarra A., Aguilar I., Misztal I. (2009). A relationship matrix including full pedigree and genomic information. J. Dairy Sci., 92: 4656–4663.Search in Google Scholar

Meuwissen T.H.E., Hayes B.J., Goddard M.E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157: 1819–1829.Search in Google Scholar

Meyer K., Houle D. (2013). Sampling based approximation of confidence intervals for functions of genetic covariance matrices. Proc. Assoc. Advmt. Anim. Breed. Genet., 20: 523–526.Search in Google Scholar

Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T., Lee D.H. (2002). BLUPF90 and related programs (BGF90). Proc. 7th World Congress on Genetic Applied to Livestock Production. Montpellier, France.Search in Google Scholar

Moser G., Khatkar M.S., Hayes B.J., Raadsma H.W. (2010). Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers. Genet. Sel. Evol., 42: 37.Search in Google Scholar

Mulder H.A., Calus M.P.L., Druet T., Schrooten C. (2012). Imputation of genotypes with low-density chips and its effect on reliability of direct genomic value in Dutch Holstein cattle. J. Dairy Sci., 95: 876–889.Search in Google Scholar

Přibyl J., Bauer J., Pešek P., Přibylová J., Vostrý L., Zavadilová L. (2014). Domestic and Interbull information in the single-step genomic evaluation of Holstein milk production. Czech J. Anim. Sci., 59: 409–415.Search in Google Scholar

Rhone J.A., Koonawootrittriron S., Elzo M.A. (2008). Factors affecting milk yield, milk fat, bacterial score, and bulk tank somatic cell count of dairy farms in the central region of Thailand. Trop. Anim. Health Prod., 40: 147–153.Search in Google Scholar

Rodríguez-Ramilo S.T., García-Cortés L.A., González-Recio Ó. (2014). Combining genomic and genealogical information in a reproducing kernel Hilbert spaces regression model for genome-enabled predictions in dairy cattle. PLoS ONE, 9: e93424.Search in Google Scholar

Sarakul M., Koonawootrittriron S., Elzo M.A., Suwanasopee T. (2011). Factors influencing genetic change for milk yield within farm in Central Thailand. Asian-Aust. J. Anim. Sci., 24: 1031–1040.Search in Google Scholar

Sargolzaei M., Chesnais J.P., Schenkel F.S. (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15: 478.Search in Google Scholar

Schaeffer L.R. (2006). Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet., 123: 218–223.Search in Google Scholar

Schenkel F.S., Sargolzaei M., Kistemaker G., Jansen G.B., Sullivan P., Van Doormaal B.J., Van Raden P.M., Wiggans G.R. (2009). Reliability of genomic evaluation of Holstein cattle in Canada. Proc. Interbull International Workshop, Uppsala, Sweden. pp. 51–58.Search in Google Scholar

Su G., Madsen P., Nielsen U.S., Mäntysaari E.A., Aamand G.P., Christensen O.F., Lund M.S. (2012). Genomic prediction for Nordic Red cattle using one-step and selection index blending. J. Dairy Sci., 95: 909–917.Search in Google Scholar

Thai Meteorological Department (2010). The Thai Meteorological Department: Climate of Thailand. Available Source: http://www.tmd.go.th/info/climate_of_thailand-2524-2553.pdf, 18 July 2016.Search in Google Scholar

Thomasen J.R., Guldbrandtsen B., Su G., Brøndum R.F., Lund M.S. (2012). Reliabilities of genomic estimated breeding values in Danish Jersey. Animal, 6: 789–796.Search in Google Scholar

Tsuruta S. (2014). Average Information REML with several options including EM-REML and heterogeneous residual variances. Available Source: http://nce.ads.uga.edu/wiki/doku.php?id=application_programs, 20 June 2016.Search in Google Scholar

Van Doormaal B.J., Kistemaker G.J., Sullivan P.G., Sargolzaei M., Schenkel F.S. (2009). Canadian implementation of genomic evaluations. Proc. Interbull International Workshop, Uppsala, Sweden. pp. 214–218.Search in Google Scholar

Van Raden P.M. (2008). Efficient methods to compute genomic predictions. J. Dairy Sci., 91: 4414–4423.Search in Google Scholar

Van Raden P.M., Van Tassell C.P., Wiggans G.R., Sonstegard T.S., Schnabel R.D., Taylor J.F., Schenkel F. (2009). Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci., 92: 16–24.Search in Google Scholar

Van Raden P.M., O’ Connell J.R., Wiggans G.R., Weigel K.A. (2011). Genomic evaluations with many more genotypes. Genet. Sel. Evol., 43: 10.Search in Google Scholar

Wiggans G.R., Van Raden P.M., Cooper T.A. (2011). The genomic evaluation system in the United States: past, present, future. J. Dairy Sci., 94: 3202–3211.Search in Google Scholar

Yaemkong S., Koonawootrittriron S., Elzo M.A., Suwanasopee T. (2010). Effect of experience, education, record keeping, labor and decision making on monthly milk yield and revenue of dairy farms supported by a private organization in Central Thailand. Asian-Aust. J. Anim. Sci., 23: 814–824.Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine