Functioning of the Intestinal Ecosystem: From New Technologies in Microbial Research to Practical Poultry Feeding – A Review

Open access

Abstract

Unlike classical microbiology which focuses on bacteria capable of growing in vitro, metagenomics is a study of genetic information originating from microflora which aims to characterise the microbiome, namely the common genome of bacteria, archaea, fungi, protozoa and viruses living in the host. Metagenomics relies on next-generation sequencing (NGS), a large-scale sequencing technique which allows millions of sequential reactions to be carried out in parallel to decode entire communities of microorganisms. Metagenomic analyses support taxonomic analyses (involving gene fragments encoding ribosomal RNAs 5S and 16S in bacteria) or functional analyses for identifying genes encoding proteins that participate in the regulation of metabolic pathways in the body. New metagenomics technologies expand our knowledge of the phylogenetic structure of microflora in the gastrointestinal tract of poultry, and they support the identification of previously unknown groups of microbiota, mainly those occurring in small numbers. Next-generation sequencing also provides indirect information about the quantitative structure of the genes of gut microorganisms, but microbial activity and changes in the proportions of microbial metabolites that affect the host’s intestinal integrity and metabolism remain insufficiently investigated. Therefore, research studies are undertaken to investigate the proportions of the key microbial metabolites in the intestinal contents of poultry relative to changes in the population size of the most important bacterial groups, including those determined by cheaper techniques.

Apajalahti J., Kettunen A., Grahamh H. (2004). Characteristics of gastrointestinal microbial communities, with special reference to the chicken. World’s Poultry Sci. J., 60: 223–232.

Barko P.C., Mc Michael M.A., Swanson K.S., Williamson D.A. (2018). The gastrointestinal microbiome: A Review. J. Vet. Intern. Med., 32: 9–25.

Bervoets L., Van Hoorenbeeck K., Kortleven I., Van Noten C., Hens N., Vael C., Goossens H., Desager K.N., Vankerckhoven V. (2013). Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog., 5: 10.

Borda-Molina D., Vital M., Sommerfeld V., Rodehutscord M., Camarinha-Silva A. (2016). Insights into broilers’ gut microbiota fed with phosphorus, calcium and phytase supplemented diets. Front. Microbiol., 7: 2033.

Borda-Molina D., Seifert J., Camarinha-Silva A. (2018). Current perspective of the chicken gastrointestinal tract and its microbiome. Comput. Struct. Biotechnol. J., 16: 131–139.

Campanaro S., Treu L., Kougias P.G., de Francisci D., Valle G., Angelidaki I. (2016). Metagenomic analysis and functional characterization of the biogas microbiome using high through-put shotgun sequencing and a novel binning strategy. Biotechnol. Biofuels, 9: 26.

Chistoserdova L. (2009). Functional metagenomics: recent advances and future challenges. Bio- technol. Genet. Eng. Rev., 26: 335–352.

Cho I., Blaser M.J. (2012). The human microbiome: At the interface of health and disease. Nat. Rev. Genet., 13: 260–270.

Choi K.Y., Lee T.K., Sul W.J. (2015). Metagenomic analysis of chicken gut microbiota for improving metabolism and health of chickens – a review. Asian-Australas. J. Anim. Sci., 28: 1217–1225.

Clavijo V., Florez M.J.V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Sci., 97: 1006–1021.

Cole J.R., Wang Q., Fish J.A., Chai B., Mc Garrell D.M., Sun Y., Brown T., Porras-Alfaro A., Kuske C.R., Tiedje J.M. (2014). Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res., 42: D633–D642.

Cruaud R., Vigneron A., Lucchetti-Miganeh C., Ciron P.E., Godfroy A., Cambon-Bonavita M.A. (2014). Influence of DNA extraction method, 16S rRNA targeted hypervariable regions, and sample origin on microbial diversity detected by 454 pyrosequencing in marine chemo-synthetic ecosystems. Appl. Environ. Microbiol., 80: 4626–4639.

Danzeisen J.L., Kim H.B., Isaacson R.E., Tu Z.J., Johnson T.J. (2011). Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS One, 6: e27949.

De Cesare A., Sirri F., Manfreda G., Moniaci P., Giardini A., Zampiga M., Meluzzi A. (2017). Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbiome and productive performance in broiler chickens. PloS One, 12: e0176309.

De Maesschalck C., Eeckhaut V., Maertens L., De Lange L., Marchal L., Nezer C., De Baere S., Croubels S., Daube G., Dewulf J., Haesebrouck F., Ducatelle R., Taminau B., Van Immerseel F. (2015). Effects of xylo-oligosaccharides on broiler chicken performance and microbiota. J. Appl. Environ. Microbiol., 81: 5880–5888.

Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D-J., Bakker B.M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 54: 2325–234.

Deusch S., Tilocca B., Camarinha-Silva A., Seifert J. (2015). News in livestock research – Use of omics-technologies to study the microbiota in the gastrointestinal tract of farm animals. Comput. Struct. Biotechnol. J., 13: 55–63.

Ding J., Zhao L., Wang L., Zhao W., Zhai Z., Leng L., Wang Y., He C., Zhang Y., Zhang H., Li H., Meng H. (2016). Divergent selection-induced obesity alters the composition and functional pathways of chicken gut microbiota. Genet. Select. Evol., 48: 93.

Ducatelle R., Goossens E., De Meyer F., Eeckhaut V., Antonissen G., Haeseb-rouck F., Van Immerseel F. (2018). Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Vet. Res., 849: 43.

Handelsman J., Rondon M.R., Brady S.F., Clardy J., Goodman R.M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol., 5: R245–R249.

Hang J., Desai V., Zavajevski N., Yang Y., Lin X., Satya R.V., Martinez L.J., Blaylock J.M., Jarman R.G., Thomas S.J., Kuschner R.A. (2014). 16S rRNA gene pyrosequencing of reference and clinical samples and investigation of the temperature stability of microbiome profiles. Microbiome, 2: 31.

Hooper L.V., Gordon J.I. (2001). Commensal host-bacterial relationships in the gut. Science, 292: 1115–1118.

Hou Q., Kwok L.Y., Zheng Y., Wang L., Guo Z., Zhang J., Huang W., Wang Y., Leng L., Li H., Zhang H. (2016). Differential fecal microbiota are retained in broiler chicken lines divergently selected for fatness traits. Sci. Rep., 6: 37376.

Hume M.E. (2011). Historic perspective: Probiotics, prebiotics, and other alternatives to antibiotics. Poultry Sci., 90: 2663–2669.

Huyghebaert G., Ducatelle R., van Immerseel F. (2011). An update on alternatives to antimicrobial growth promoters for broilers. Vet. J., 187: 182–188.

Jankowski J., Zduńczyk Z., Mikulski D., Przybylska-Gornowicz B., Sosnowska E., Juśkiewicz J. (2013). Effect of whole wheat feeding on gastrointestinal tract development and performance of growing turkeys. Anim. Feed Sci. Technol., 185: 150–159.

Jumpertz R., Le D.S., Turnbaugh P.J., Trinidad C., Bogardus C., Gordon J.J., Krakoff J. (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr., 94: 58–65.

Kers J.G., Velkers F.C., Fischer E.A., Hermes G.D., Stegman J.A., Smidt H. (2018). Host and environmental factors affecting the intestinal microbiota in chickens. Front. Microbiol., 9: 235.

Kunin V., Engelbrektson A., Ochman H., Hugenholtz P. (2010). Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol., 12: 118–123.

Lee K-C., Kil D.Y., Sul W.J. (2017). Cecal microbiome divergence of broiler chickens by sex and body weight. J. Microbiol., 55: 939–945.

Liu L., Li Y., Li S., Hu N., He Y., Pong R., Lin D., Lu L., Law M. (2012). Comparison of next-generation sequencing systems. BioMed Res. Int., 2012: 251364.

Lu J., Idris U., Harmon B., Hofacre C., Maurer J.I., Lee M.D. (2003). Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol., 69: 6816–6824.

Marchesi J.R., Ravel J. (2015). The vocabulary of microbiome research: a proposal. Microbiome, 3: 31.

Meyer A., Todt C., Mikkelsen N.T., Lieb B. (2010). Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity. BMC Evol. Biol., 10: 70.

Mignon-Grasteau S., Narcy A., Rideau N., Chantry-Darmon C., Boscher M-Y., Sellier N., Chabault M., Konsak-Ilievski B., Le Bihan-Duval E., Gabriel I. (2015). Impact of selection for digestive efficiency on microbiota composition in the chicken. PLOS One, 10: e0135488.

Millet S., van Oeckel M.J., Aluwé M., Delezie E., De Brabander D.L. (2010). Prediction of in vivo short-chain fatty acid production in hindgut fermenting mammals: problems and pitfalls. Crit. Rev. Food Sci. Nutr., 50: 605–619.

Mohinudeen C., Joe M.M., Benson A., Tongmin S. (2017). An overview of Next-Generation Sequencing (NGS) technologies to study the molecular diversity of genome. Microbial Applications, 1: 295–317.

Nielsen H.B., Almeida M., Juncker A.S., Rasmussen S., Li J., Sunagawa S., etal. (2014). Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol., 32: 822–828.

Oakley B.B., Lillehoj H.S., Kogut M.H., Kim W.K., Pedroso M.A., Lee M.D., Collett S.R., Johnson T.J., Cox N.A. (2014). The chicken gastrointestinal microbiome. FEMS Microbiol. Lett., 360: 100–112.

Olnood C.G., Beski S.S.M., Iji P.A., Choct.M. (2015). Delivery routes for probiotics. Effects on broiler performance, intestinal morphology and gut microflora. Anim. Nutr., 1: 192–202.

Pan D., Yu Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5: 108–119.

Qu A., Brulc J.M., Wilson M.K., Law B.F., Theoret J.R., Joens L.A., Konkel M.E., Angly F., Dinsdale E.A., Edwards R.A., Nelson K.E., White B.A. (2008). Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One, 3: e2945.

Ranjitkar S., Lawley B., Tannock G., Engberg R.M. (2016). Bacterial succession in the broiler gastrointestinal tract. Appl. Environ. Microb., 82: 2399–2410.

Rehman H., Vahjen W., Awad W.A., Zentek J. (2007). Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Arch. Anim. Nutr., 6: 319–335.

Rougière N., Malbert C.H., Rideau N., Cognié J., Carré B. (2002). Comparison of gizzard activity between chickens from genetic D+ and D-lines selected for divergent digestion efficiency. Poultry Sci., 91: 460–467.

Ruiz R., Peinado M.J., Aranda-Olmedo I., Abecia L., Suarez-Pereira E., Ortiz Mel-let C., Garcia Fernandez J.M., Rubio L.A. (2015). Effect of feed additives on ileal mucosa-associated microbiota composition of broiler chickens. J. Anim. Sci., 93: 3410–3420.

Salanitro J.P., Fairchilds I.G., Zgornicki Y.D. (1974). Isolation, culture characteristics, and identification of anaerobic bacteria from the chicken cecum. Appl. Microbiol., 27: 678–687.

Schloss P.D., Handelsman J. (2003). Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol., 14: 303–310.

Scholz M.B., Lo C.C., Chain P.S. (2012). Next generation sequencing and bioinformatic bottle-necks: the current state of metagenomic data analysis. Curr. Opin. Biotech., 23: 9–15.

Sergeant M.J., Constantinidou C., Cogan T.A., Bedford M.R., Penn C.W., Pallen M.J. (2014). Extensive microbial and functional diversity within the chicken cecal microbiome. PloS One, 9: e91941.

Sharpton T.J. (2014). An introduction to the analysis of shotgun metabolomic data. Front. Plant Sci., 209: 1–14.

Siegerstetter S-C., Petri R.M., Magowan E., Lawlor P.G., Zebeli Q., O’Connel N.E., Metzler-Zebeli B.U. (2018). Feed restriction modulates the fecal microbiota composition, nutrient retention, and feed efficiency in chicken divergent in residual feed intake. Front. Mibrobiol. 9: 2698.

Singh K.M., Shah T.M., Reddy B., Deshpande S., Rank D.N., Joshi C.G. (2014). Taxonomic and gene-centric metagenomics of the fecal microbiome of low and high feed conversion ratio (FCR) broilers. J. Appl. Genet., 55: 145–154.

Sitnicka D., Figurska K., Orzechowski S. (2010). Functional analysis of genes. Adv. Cell Biol., 2: 1–16.

Song J., Xiao K., Ke Y.L., Jiao L.F., Hu C.H., Diao Q.Y., Shi B., Zou X.T. (2014). Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Sci., 93: 581–588.

Stanley D., Geier M.S., Hughes R.J., Denman S.E., Moore R.J. (2013). Highly variable microbiota development in the chicken gastrointestinal tract. PLoS One, 8: e84290.

Stanley D., Hughes R.J., Moore R.J. (2014). Microbiota of the chickens gastrointestinal tract: Influence on health, productivity and disease. Appl. Microbiol. Biotechnol., 98: 4301–4310.

Thomas T., Gilbert J., Meyer F. (2012). Metogenomics – A quide from sampling to data analysis. Microb. Inform. Exp., 2: 3.

Tillman G.E., Haas G.J., Wise M.G., Oakley B., Smith M.A., Siragusa G.R. (2011). Chicken intestine microbiota following the administration of lupulone, a hop-based antimicrobial. FEMS Microbiol. Ecol., 77: 395–403.

Torok V.A., Ophei K., Loo M., Hughes R.J. (2008). Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl. Environ. Microbiol., 74: 783–791.

Torok V.A., Hughes R.J., Mikkelsen L.L., Perez-Maldonado R., Balding K,Macal-pine R., Percy N.J., Ophel-Keller K. (2011). Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials. Appl. Environ. Microbiol., 77: 5868–5878.

Tremaroli V., Bäckhed F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489: 242.

Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C.M., Knight R.Gordon J.I. (2007). The human microbiome project. Nature, 449: 804–810.

Vincent A.T., Derome N., Boyle B., Culley A.I., Charette S.J. (2017). Next-generation sequencing (NGS) in the microbiological world: how to make the most of your money. J. Microbiol. Meth., 138: 60–71.

Walugembe M., Rothschild M.F., Persia M.E. (2014). Effects of high fiber ingredients on the performance, metabolizable energy and fiber digestibility of broiler and layer chicks. Anim. Feed Sci. Tech., 188: 46–52.

Wang W-L., Xu S-Y., Ren Z-G., Tao L., Jiang J-W., Zheng S-S. (2015). Application of metagenomics in the human gut microbiome. World J. Gastroentero., 21: 803–814.

Wei S., Morrison M., Yu Z. (2013). Bacterial census of poultry intestinal microbiome. Poultry Sci., 92: 671–683.

Wilkinson T.J., Cowan A.A., Vallin H.E., Onime L.A., Oyama L.B., Cameron S.L., Gonot C., Moorby J.M., Waddams K., Theobald V.J., Leemans D., Bowra S., Nixey C., Huws S.A. (2017). Characterization of the microbiome along the gastrointestinal tract of growing turkeys. Front Microbiol., 8: 1089; doi: 10.3389/fmicb.2017.01089. eCollection 2017.

Willems O.W., Miller S.P., Wood B.J. (2013). Aspects of selection for feed efficiency in meat producing poultry. World’s Poultry Sci. J., 69: 77–88.

Yao C.K., Muir J.G., Gibson P.R. (2016). Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment Pharmacol. Ther., 43: 181–196.

Yeoman C.J., Cjia N., Jeraldo P., Sipos M., Goldenfield N., White B.A. (2012). The microbiome of the chicken gastrointestinal tract. An. Health Res. Rev., 13: 89–99.

Zduńczyk Z., Jankowski J., Mikulski D., Przybylska-Gornowicz B., Sosnows-ka E., Juśkiewicz J. (2013). Gastrointestinal morphology and function in turkeys fed diets diluted with whole grain wheat. Poultry Sci., 92: 1799–1811.

Zduńczyk Z., Jankowski J., Rutkowski A., Sosnowska E., Drażbo A., Juśkiewicz J. (2014). The composition and enzymatic activity of gut microbiota in laying hens fed diets supplemented with blue lupine seeds. Anim. Feed Sci. Technol., 191: 57–66.

Zduńczyk Z., Jankowski J., Kaczmarek S., Juśkiewicz J. (2015). Determinants and effects of postileal fermentation in broilers and turkeys part 1: Gut microbiota composition and its modulation by feed additives. World’s Poultry Sci. J., 71: 37–47.

Zduńczyk Z., Krawczyk M., Mikulski D., Jankowski J., Przybylska-Gornowicz B., Juśkiewicz J. (2016). Beneficial effects of increasing dietary levels of yellow lupine (Lupinus luteus) seed meal on productivity parameters and gastrointestinal tract physiology in eight-week-old turkeys. Anim. Feed Sci. Technol., 211: 189–198.

Zduńczyk Z., Mikulski D., Jankowski J., Przybylska-Gornowicz B., Sosnowska E., Juśkiewicz J., Słomiński B.A. (2018). Effects of dietary inclusion of high- and low- tannin faba bean (Vicia faba L.) seeds on microbiota, histology and fermentation processes of the gastrointestinal tract in finisher turkeys. Anim. Feed Sci. Technol., 240: 184–196.

Zhao L., Wang G., Siegel P., He C., Wang H., Zhao W., Zhai Z., Tian F., Ahao J., Zhang H., Sun Z., Chen W., Zhang Y., Meng H. (2013). Quantitative genetic background of the host influences gut microbiomes in chickens. Sci. Rep., 3: 1–6.

Zhao P.Y., Li H.L., Mohammadi M., Kim H. (2016). Effect of dietary lactulose supplementation on growth performance, nutrient digestibility, meat quality, relative organ weight, and excreta microflora in broilers. Poultry Sci., 95: 84–89.

Annals of Animal Science

The Journal of National Research Institute of Animal Production

Journal Information


IMPACT FACTOR 2017: 1.018
5-year IMPACT FACTOR: 0.959



CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.413
Source Normalized Impact per Paper (SNIP) 2017: 0.822

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 103 103 63
PDF Downloads 95 95 56