Nutritional and immunomodulatory function of methionine in poultry diets – a review

Open access


Methionine (Met) plays many important metabolic functions in humans and animals, and therefore may be classified as a functional amino acid (AA). Functional AAs are defined as those AAs that participate in and regulate key metabolic pathways to improve health, survival, growth, development, and reproduction of organisms. As the first-limiting AA in poultry diets, Met affects poultry production parameters such as body weight gains, feed conversion ratio and carcass quality. The results of many experiments on chickens fed diets with different levels of Met (from 0.3 to 1.2% in the starter period, and from 0.3 to 0.9% in the grower period) indicate that commercial broiler chickens do not require more than 0.50 and 0.38% Met in starter and grower diets, respectively, for optimum growth and feed efficiency, whereas higher inclusion rates of Met are needed to stimulate immune responses. The results of recent experiments on chickens are insufficient to define the optimal dietary levels of Met, which has been shown to exert immunostimulatory activity. A few experiments on layer hens have demonstrated that Met requirements for immune competence are higher than for optimum production, but the inclusion levels of this AA needed to stimulate the immune system of birds have not been defined. In the absence of such research, it remains unknown whether feeding growing turkeys diets supplemented with Met above NCR recommendations, as suggested by B.U.T. (British United Turkeys), stimulates the immune system of birds.


  • Baker D.H. (2009). Advances in protein-amino acid nutrition of poultry. Am. Aci., 37: 29-41.

  • Bouyeh M. (2012). Effect of excess lysine and methionine on immune system and performance of broilers. Ann. Biol. Res., 3: 3218-3224.

  • Brosnan J.T., Brosnan M.E. (2006). The sulfur-containing amino acids: an overview. J. Nutr., 136: 1636-1640.

  • Bunchasak C. (2009). Role of dietary methionine in poultry production. J. Poultry Sci., 46: 169-179.

  • BUT (2012). Commercial Performance Goals. Id=8

  • Calder P.C. (2006). Branched-chain amino acid and immunity. J. Nutr., 136: 288S-293S.

  • Chien X.X., Zafira - Stone S., Bagchi M., Bagchi D. (2006). Bioavailability, antioxidant and immune-enhancing properties of zinc methionine. Bio Factors, 27: 231-244.

  • Conde- Aguilera J.A., Cobo - Ortega C., Tesseraud S., Lessire M., Mercier Y., Milgen J. (2013). Changes in body composition in broilers byasulfur amino acid deficiency during growth. Poultry Sci., 92: 1266-1275.

  • Crhanova M., Hradecka H., Faldynova M., Matulova M., Havlickova H., Sisak F., Rychlik I. (2011). Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enteritis serovar enteritidis infection. Infect. Immun., 79: 2755-2763.

  • Dahiya J.P., Hoehler D., Van Kessel A.G., Drew M.D. (2007). Effect of different dietary methionine sources on intestinal microbial populations in broiler chickens. Poultry Sci., 86: 2358-2366.

  • Deng K., Wong C.W., Nolan J.V. (2007). Carry-over effects of early-life supplementary methionine on lymphoid organs and immune responses in egg-laying strain chickens. Anim. Feed Sci. Technol., 134: 66-76.

  • Dunlevy L.P., Burren K.A., Mills K., Chitty L.S., Copp A.J., Greene N.D. (2006). Integrity of the methylation cycle is essential for mammalian neural tube closure. Birth Defects Res. A. Clin. Mol. Teratol., 76: 544-552.

  • Elagib H.A.A., Elzubeir E.A. (2012). Humoral immune response of broiler chicks fed different levels of methionine and energy under heat stress. Int. J. Poultry Sci., 11: 400-404.

  • Emmerson D.A. (1997). Commercial approaches to genetic selection for growth and feed conversion in domestic poultry. Poultry Sci., 76: 1121-1125.

  • Fang Y.Z., Yang S., Wu G. (2002). Free radicals, antioxidants, and nutrition. Nutrition, 18: 872-879.

  • Fang Z., Yao K., Zhang X., Zhao S., Sun Z., Tian G., Yu B., Lin Y., Zhu B., Jia G., Zhang K., Chen D., Wu D. (2010). Nutrition and health relevant regulation of intestinal sulfur amino acid metabolism. Am. Aci., 39: 633-640.

  • Gf E (1999). Empfehlungen zur Energie-und Nährstoffversorgung der Legehennen und Masthühner (Broiler). DLG Verlag.

  • Gf E (2004). Empfehlungen zur Energie-und Nährstoffversorgung der Mastputen. Proc. Society of Nutrition Physiology, DLG Verlag, 13: 199-233.

  • Grimble R.F. (2006). The effects of sulfur amino acid intake on immune function in humans. J. Nutr., 136: 1660-1665.

  • Grimble R.F., Grimble G.K. (1998). Immunonutrition: Role of sulfur amino acids, related amino acids, and polyamines. Nutr., 14: 605-610.

  • Halsted C.H., Medici V. (2012). Aberrant hepatic methionine methabolism and gene methylation in the pathogenesis and treatment of alcoholic steatohepatitis. Int. J. Hep., 959746: 1-7.

  • Hashemi S.R., Davoodi H. (2012). Herbal plants as new immuno-stimulator in poultry industry:areview. Asian J. Anim. Vet. Advanc., 7: 104-116.

  • Havenstein G.B., Ferket P.R., Qureshi M.A. (2003). Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Sci., 82: 1500-1508.

  • Hoehler D., Lemme A., Roberson K., Turner K. (2005). Impact of methionine sources on performance in turkeys. J. Appl. Poult. Res., 14: 296-305.

  • Hosseini S.A., Zaghari M., Lotfollahian H., Shivazad M., Moraviaj H. (2012). Reevaluation of methionine requirement based on performance and immune responses in broiler breeder hens. J. Poultry Sci., 49: 26-33.

  • Ito K., Miwa N., Hagiwara K., Yano T., Shimizu- Saito K., Goseki N., Iwai T., Horikawa S. (1999). Regulation of methionine adenosyltransferase activity by the glutathione level in rat liver during ischemia-reperfusion. Surg. Today, 29: 1053-1058.

  • Jankowski J., Zduńczyk Z., Juśkiewicz J., Kwieciński P. (2011 a). The effect of different dietary sodium levels on the growth performance of broiler chickens, gastrointestinal function, excreta moisture and tibia mineralization. J. Anim. Feed Sci., 20: 93-106.

  • Jankowski J., Lecewicz A., Chwastowska- Siwiecka I., Juśkiewicz J., Zduń -czyk Z. (2011 b). Performance, slaughter value and meat quality of turkeys fed diets with different content of sunflower meal. Arch. Geflügelk., 75 (2): 104-112.

  • Kidd M.T., Qureshi M.A., Ferket P.R., Thomas L.N. (1994). Dietary zinc-methionine enhances mononuclear-phagocytic function in young turkeys. Biol. Trace Eleme. Res., 42: 217-229.

  • Kidd M.T. (2004). Nutritional modulation of immune function in broilers. Poultry Sci., 83: 650-657.

  • Kim W.K., Froelich Jr C.A., Patterson P.H., Ricke S.C. (2006). The potential to reduce poultry nitrogen emissions with dietary methionine or methionine analogues supplementation. World’s Poultry Sci. J., 62: 338-353. Klasing K.C. (1998). Nutritional modulation of resistance to infectious diseases. Poultry Sci., 77: 1119-1125.

  • Klasing K.C. (2004). The costs of immunity. Acta Zool. Sin., 50: 961-969.

  • Kogut M.H. (2009). Impact of nutrition on the innate immune response to infection in poultry. J. Appl. Poultry Res., 18: 111-124.

  • Koreleski J., Świątkiewicz S. (2008). Effect of protein methionine levels inasemi-organic diet for dual-purpose type chickens on slaughter performance and nitrogen balance. J. Anim. Feed Sci., 17: 381-391.

  • Lara L.J., Rostagno M.H. (2013). Impact of heat stress on poultry production. Animals, 3: 356-369.

  • Lemme A., Kozłowski K., Jankowski J., Petri A., Zduńczyk Z. (2005). Responses of 36 to 63 day old BUT Big 6 turkey toms to graded dietary methionine + cysteine levels. J. Anim. Feed Sci., 14: Suppl. 1: 139-142.

  • Leshchinsky T.V., Klasing K.C. (2001). Divergence of the inflammatory response in two types of chickens. Dev. Comp. Immunol., 25: 629-663.

  • Li P., Yin Y-L., Li D., Kim S.W., Wu G. (2007). Amino acids and immune function. Brit. J. Nutr., 98: 237-252.

  • Luo S., Levine R.L. (2009). Methionine in proteins defends against oxidative stress. FASEB J., 23: 464-472.

  • Maroufyan E., Kasim A., Hashemi S.R., Loh T.C., Bejo M.H., Davoodi H. (2010). The effect of methionine and threonine supplementations on immune response of broiler chickens challenged with infectious bursal disease. Am. J. Appl. Sci., 7: 44-50.

  • Martin - Venegas R., Geraert P.A., Ferrer R. (2006). Conversion of the methionine hydroxy analogue dl-2-hydroxy-(4-methylthio) butanoic acid to sulfur-containing amino acids in the chicken small intestine. Poultry Sci., 85: 1932-1938.

  • Mashaly M.M., Heetkamp M.J., Parmentier H.K., Schrama J.W. (2000). Influence of genetic selection for antibody production against sheep red blood cells on energy and metabolism in laying hens. Poultry Sci., 79: 519-524.

  • Matsushita K., Takahashi K., Akiba Y. (2007). Effects of adequate or marginal excess of dietary methionine hydroxyl analogue free acid on growth performance, edible meat yields and inflammatory response in female broiler chickens. J. Poultry Sci., 44: 265-272.

  • Meirelles H.T., Albuquerque R., Borgatti L.M.O., Souza L.W.O., Meister N.C., Lima F.R. (2003). Performance of broilers fed with different levels of methionine hydroxyl analogue and DL-methionine. Braz. J. Poultry Sci., 5: 69-74.

  • Mikulski D., Jankowski J., Zduńczyk Z., Wróblewska M., Sartowska K., Ma -jewska T. (2009). The effect of selenium source on performance, carcass traits, oxidative status of the organism, and meat quality of turkeys. J. Anim. Feed Sci., 18: 518-530.

  • Mikulski D., Jankowski J., Zduńczyk Z., Juśkiewicz J., Słominski B.A. (2012). The effect of different dietary levels of rapeseed meal on growth performance, carcass traits, and meat quality in turkeys. Poultry Sci., 91: 215-223.

  • Mikulski D., Jankowski J., Juśkiewicz J., Mikulska M., Zduńczyk Z. (2014). The effect of different dietary levels of lupin seeds (L. angustifolius and L. luteus) on growth performance, GITdevelopment, and meat quality in growing-finishing turkeys. Anim. Feed Sci. Technol. (in press).

  • Mirzaaghatabar F., Saki A.A., Zamani P., Aliarabi H., Hemati Matin H.R. (2011). Effect of different levels of diet methionine and metabolisable energy on broiler performance and immune system. Food Agr. Immunol., pp. 1-11.

  • Moore D.T., Baker K., Firman J.D. (2004). Digestible sulfur amino acid requirement for male turkeys from six to twelve weeks of age. J. Appl. Poultry Res., 13: 155-162.

  • Murillo M.G., Jensen L.S. (1976). Methionine requirement of developing turkeys 8-12 weeks of age. Poultry Sci., 55: 1414-1418.

  • NRC (National Research Council) (1994). Nutrient requirements of poultry. 9th revised edn. National Academic Press, Washington, DC.

  • Panda A.K., Rama Rao S.V., Raju M.V.L.N., Bhanja S.K. (2007). Relative performance and immune response in white leghorn layers fed liquid DL-methionine hydroxy analogue and DLmethionine. Asian-Aust. J. Anim. Sci., 6: 948-953.

  • Radoja S., Frey A.B., Vukmanovic S. (2006). T-cell receptor signaling events triggering granule exocytosis. Crit. Rev. Immunol., 26: 265-290.

  • Rama Rao S.V., Praharaj N.K., Reddy M.R., Panda A.K. (2003). Interaction between genotype and dietary concentrations of methionine for immune function in commercial broilers. Br. Poultry Sci., 44: 104-112.

  • Ross (2007). Broiler Nutrition Specification.

  • Rubin L.L., Canal C.W., Ribeiro A.L.M., Kessler A., Silva I., Trevizan L., Viola T., Raber M., Goncalves T.A., Kras R. (2007). Effects of methionine and arginine dietary levels on the immunity of broiler chickens submitted to immunological stimuli. Br. J. Poultry Sci., 9: 241-247.

  • Ruth M.R., Field C.J. (2013). The immune modifying effects of amino acids on gut-associated lymphoid tissue. J. Anim. Sci. Biotechnol., 42, p. 27.

  • Shini S., Li X., Bryden W.L. (2005). Methionine requirement and cell-mediated immune in chicks. Asia Pac. J. Clin. Nutr., 14 (Suppl) S123.

  • Sproul T.W., Cheng P.C., Dykstra M.L., Pierce S.K. (2000). Arole for MHCclass IIantigen processing in Bcell development. Int. Rev. Immunol., 19: 139-155.

  • Swain B.K., Johri T.S. (2000). Effect of supplemental methionine, choline and their combinations on the performance and immune response of broilers. Br. Poultry Sci., 41: 83-88.

  • Swennen Q., Geraert P-A., Mercier Y., Everaert N., Stinckens A., Willemsen H., Li Y., Decuypere E., Buyse J. (2011). Effects of dietary protein content and 2-hydroxy-4- -methylthiobutanoic acid or DL-methionine supplementation on performance and oxidative status of broiler chickens. Brit. J. Nutr. 106: 1845-1854.

  • Takahashi K., Ohta N., Akiba Y. (1997). Influences of dietary methionine and cysteine on metabolic responses to immunological stress by Escherichia coli lipopolysaccharide injection, and mitogenic response in broiler chickens. Brit. J. Nutr., 78: 815-821.

  • Troen A.M., Lutgens E., Smith D.E., Rosenberg I.H., Selhub J. (2003). The atherogenic effect of excess methionine intake. Proc. Natl. Acad. Sci. USA, 100: 15089-15094.

  • Tsiagbe V.K., Cook M.E., Harper A.E., Sunde M.L. (1987). Efficacy of cysteine in replacing methionine in the immune responses of broiler chicks. Poultry Sci., 66: 1138-1146.

  • Vedenov D., Pesti G.M. (2010). An economic analysis ofamethionine source comparison response model. Poultry Sci., 89: 2514-2520.

  • Waldroup P.W., Adams P.W., Waldroup A.L. (1997). Evaluation of National Research Council amino acid recommendations for Large White turkeys. Poultry Sci., 76: 711-720.

  • Wallwork J.C., Duerre J.A. (1985). Effect of zinc deficiency on methionine metabolism, methylation reactions and protein synthesis in isolated perfused rat liver. J. Nutr., 115: 252-262.

  • Waterland R.A. (2006). Assessing the effects of high methionine intake on DNAmethylation. J. Nutr., 136: 1706-1710.

  • Webb R.E., Leslie Jr D.M., Lochmiller R.L., Masters R.E. (2003). Immune function and hematology of male cotton rats (Sigmodon hispidus) in response to food supplementation and methionine. Comp. Bioch. Ph. P. A., 136: 577-589.

  • Wershil B.K., Furuta G.T. (2008). Gastrointestinal mucosal immunity. J. Allergy Clin. Immunol., 121: 380-383.

  • Willemsen H., Swennen Q., Everaert N., Geraert P.A., Mercier Y., Stinckens A., Decuypere E., Buyse J. (2011). Effects of dietary supplementation of methionine and its hydroxyl analog DL-2-hydroxy-4-methylthiobutanoic acid on growth performance, plasma hormonal levels, and the redox status of broiler chicken exposed to high temperatures. Poultry Sci., 90: 2311-2320.

  • Wu G., Meininger C.J. (2002). Regulation of nitric oxide synthesis by dietary factors. Annu Rev. Nutr., 22: 61-86.

  • Wu G. (2010). Functional amino acids in growth, reproduction, and health. Adv. Nutr., 1: 31-37.

  • Wu B., Cui H., Peng X., Fang J., Cui W., Liu X. (2012). Effect of methionine deficiency on the thymus and the subsets and proliferation on peripheral blood Tcell, and serum IL 2 in broilers. J. Int. Agri., 11: 1009-1019.

  • Wu G. (2013). Functional amino acids in nutrition and health. Amino Acids, 45: 407-411. Wu B., Cui H., Peng X., Fang J., Cui W., Liu X. (2013). Pathology of bursa of Fabricius in methionine-deficient broiler chickens. Nutrients, 5: 877-886.

  • Yasuhiko K., Sakamoto S., Kasahara T., Kusumoto K., Hida K., Suda K., Oza-wa K., Miura Y., Taka F. (1982). Methionine dependency of cell growth in normal and malignant hematopoietic cells. Cancer Res., 42: 3090-3092.

  • Zhang L.B., Guo Y.M. (2008). Effects on liquid DL-2-hydroxy-4-methylthio butanoic acid on growth performance and immune responses in broiler chickens. Poultry Sci., 87: 1370-1376.

Annals of Animal Science

The Journal of National Research Institute of Animal Production

Journal Information

IMPACT FACTOR 2016: 0.731

CiteScore 2016: 0.79

SCImago Journal Rank (SJR) 2016: 0.345
Source Normalized Impact per Paper (SNIP) 2016: 0.687


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 26
PDF Downloads 9 9 9