Reliable Robust Path Planning with Application to Mobile Robots

Open access

Reliable Robust Path Planning with Application to Mobile Robots

This paper is devoted to path planning when the safety of the system considered has to be guaranteed in the presence of bounded uncertainty affecting its model. A new path planner addresses this problem by combining Rapidly-exploring Random Trees (RRT) and a set representation of uncertain states. An idealized algorithm is presented first, before a description of one of its possible implementations, where compact sets are wrapped into boxes. The resulting path planner is then used for nonholonomic path planning in robotics.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ackermann J. Barlett A. Kaesbauer D. Sienel W. and Steinhauser R. (1993). Robust Control Systems with Uncertain Physical Parameters Springer-Verlag London.

  • Alamo T. Bravo J. Camacho E. and de Sevilla U. (2003). Guaranteed state estimation by zonotopes Proceedings of the 42nd Conference on Decision and Control Maui Hi pp. 1035-1043.

  • Berger M. (1987). Geometry I and II Springer-Verlag Berlin.

  • Bouilly B. Simeon T. and Alami R. (1995). A numerical technique for planning motion strategies of a mobile robot in presence of uncertainty Proceedings of the IEEE International Conference on Robotics and Automation Nagoya Japan pp. 1327-1332.

  • Collins P. and Goldsztejn A. (2008). The reach-and-evolve algorithm for reachability analysis of nonlinear dynamical systems Electronic Notes in Theoretical Computer Science 223: 87-102.

  • Fraichard T. and Mermond R. (1998). Path planning with uncertainty for car-like robots Proceedings of the IEEE International Conference on Robotics and Automation Leuven Belgium pp. 27-32.

  • Francis B. A. and Khargonekar P. P. (Eds.) (1995). Robust Control Theory IMA Volumes in Mathematics and Its Applications Vol. 66 Springer-Verlag New York NY.

  • Gonzalez J. P. and Stentz A. (2004). Planning with uncertainty in position: An optimal planner Technical Report CMURI-TR-04-63 Robotics Institute Carnegie Mellon University Pittsburgh PA.

  • Gonzalez J. P. and Stentz A. (2005). Planning with uncertainty in position: An optimal and efficient planner Proceedings of the IEEE International Conference on Intelligent Robots and Systems Edmonton Canada pp. 2435-2442.

  • Gonzalez J. P. and Stentz A. (2007). Planning with uncertainty in position using high-resolution maps Proceedings of the IEEE International Conference on Robotics and Automation Rome Italy pp. 1015-1022.

  • Graham R. L. (1972). An efficient algorithm for determining the convex hull of a finite planar set Information Processing Letters 1(4): 132-133.

  • Jaulin L. (2001). Path planning using intervals and graphs Reliable Computing 7(1): 1-15.

  • Jaulin L. (2002). Nonlinear bounded-error state estimation of continuous-time systems Automatica 38(6): 1079-1082.

  • Jaulin L. Kieffer M. Didrit O. and Walter E. (2001). Applied Interval Analysis Springer-Verlag London.

  • Jaulin L. and Walter E. (1996). Guaranteed tuning with application to robust control and motion planning Automatica 32(8): 1217-1221.

  • Kieffer M. Jaulin L. Braems I. and Walter E. (2001). Guaranteed set computation with subpavings in W. Kraemer and J. W. von Gudenberg (Eds.) Scientific Computing Validated Numerics Interval Methods Kluwer Academic/Plenum Publishers New York NY pp. 167-178.

  • Kieffer M. Jaulin L. and Walter E. (2002). Guaranteed recursive nonlinear state bounding using interval analysis International Journal of Adaptative Control and Signal Processing 6(3): 193-218.

  • Kieffer M. and Walter E. (2003). Nonlinear parameter and state estimation for cooperative systems in a bounded-error context in R. Alt A. Frommer R. B. Kearfott and W. Luther (Eds.) Numerical Software with Result Verification (Platforms Algorithms Applications in Engineering Physics and Economics) Springer New York NY pp. 107-123.

  • Kieffer M. and Walter E. (2006). Guaranteed nonlinear state estimation for continuous-time dynamical models from discrete-time measurements Proceedings of the 6th IFAC Symposium on Robust Control Toulouse France (on CD-ROM).

  • Kuffner J. J. and LaValle S. M. (2000). RRT-connect: An efficient approach to single-query path planning Proceedings of the IEEE International Conference on Robotics and Automation San Francisco CA USA pp. 995-1001.

  • Lambert A. and Gruyer D. (2003). Safe path planning in an uncertain-configuration space Proceedings of the IEEE International Conference on Robotics and Automation Taipei Taiwan pp. 4185-4190.

  • Latombe J. C. (1991). Robot Motion Planning Kluwer Academic Publishers Boston MA.

  • LaValle S. M. (1998). Rapidly-exploring Random Trees: A new tool for path planning Technical report Iowa State University Ames IO.

  • LaValle S. M. (2006). Planning Algorithms Cambridge University Press Cambridge Available at: http://planning.cs.uiuc.edu/

  • LaValle S. M. and Kuffner J. J. (2001a). Randomized kinodynamic planning International Journal of Robotics Research 20(5): 378-400.

  • LaValle S. M. and Kuffner J. J. (2001b). Rapidly-exploring random trees: Progress and Prospects in B. R. Donald K. M. Lynch and D. Rus (Eds.) Algorithmic and Computational Robotics: New Directions A. K. Peters Wellesley MA pp. 293-308.

  • Lazanas A. and Latombe J. C. (1995). Motion planning with uncertainty: A landmark approach Artificial Intelligence 76(1-2): 287-317.

  • Lohner R. (1987). Enclosing the solutions of ordinary initial and boundary value problems in E. Kaucher U. Kulisch and C. Ullrich (Eds.) Computer Arithmetic: Scientific Computation and Programming Languages BG Teubner Stuttgart pp. 255-286.

  • Luenberger D. (1966). Observers for multivariable systems IEEE Transactions on Automatic Control 11(2): 190-197.

  • Moore R. E. (1966). Interval Analysis Prentice-Hall Englewood Cliffs NJ.

  • Moore R. E. (1979). Methods and Applications of Interval Analysis SIAM Philadelphia PA.

  • Pepy R. and Lambert A. (2006). Safe path planning in an uncertain-configuration space using RRT Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems Beijing China pp. 5376-5381.

  • Pepy R. Lambert A. and Mounier H. (2006). Reducing navigation errors by planning with realistic vehicle model Proceedings of the IEEE Intelligent Vehicle Symposium Tokyo Japan pp. 300-307.

  • Raissi T. Ramdani N. and Candau Y. (2004). Set membership state and parameter estimation for systems described by nonlinear differential equations Automatica 40(10): 1771-1777.

  • Ramdani N. Meslem N. and Candau Y. (2008). Reachability analysis of uncertain nonlinear systems using guaranteed set integration Proceedings of the IFAC World Congress Seoul Korea.

  • Schweppe F. C. (1973). Uncertain Dynamic Systems Prentice-Hall Englewood Cliffs NJ.

  • Yakey J. LaValle S. M. and Kavraki L. E. (2001). Randomized path planning for linkages with closed kinematic chains IEEE Transactions on Robotics and Automation 17(6): 951-958.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.504
5-year IMPACT FACTOR: 1.553

CiteScore 2018: 2.09

SCImago Journal Rank (SJR) 2018: 0.493
Source Normalized Impact per Paper (SNIP) 2018: 1.361

Mathematical Citation Quotient (MCQ) 2018: 0.08

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 278 114 3
PDF Downloads 109 64 2