T Helper Cells in the Immunopathogenesis of Systemic Sclerosis – Current Trends

Open access

Abstract

Systemic sclerosis (SSc) is a chronic progressive autoimmune disease characterized by skin and multiorgan involvement with alterations in both the innate and adaptive immunities. The hallmark of the disease is widespread fibrosis engaging the skin and multiple internal organs, as well as the musculoskeletal system. There is mounting evidence that T cells are key players in the pathogenesis of scleroderma. The current review discusses the role of the different T helper (Th) lymphocyte subsets in the processes of inflammation and fibrosis, characteristics for the pathogenesis of the disease. Cytokines produced by Th cell populations have a major effect on endothelial cells and fibroblasts in the context of favoring/inhibiting the vasculopathy and the fibrosis spread. The Th2 pro-fibrotic cytokines IL-4 and IL-13 have been shown to induce collagen synthesis by fibroblasts, whereas IFN-γ demonstrates an inhibitory effect. Increased Th17 cells are present in the scleroderma skin infiltrates. The combination of IL-17, IFN-γ and TGF-β levels in CD45RO and CD45RA cells from patients with SSc is useful to distinguish between the limited and the diffuse phenotype of the disease. There are accumulating data for functional and numerical alterations in the Tregs in SSc. High levels of TNF-α which might reduce the suppressive ability of Tregs have been described. According to some studies, the number of Tregs in scleroderma skin biopsies has been decreased against the normal absolute number of Tregs in peripheral blood of the same patients, which suggests suppressed immunomodulatory response. Other studies reported increased frequency of Tregs in peripheral blood of patients with systemic sclerosis and established a correlation with disease activity. The main immunological challenge remains the identification of the trigger of the autoimmune response in SSc, the causes for preferential Th2-type cell responses and the immunological differences between the diffuse and the limited cutaneous form of the disease.

1. Varga, J. et D. Abraham. Systemic sclerosis: a prototypic multisystem fibrotic disorder. – J Clin Invest, 117, 2007, № 3, 557-67.

2. Mayes M. et S. Assassi. Classification and epidemiology of scleroderma. – In: Rheumatology. 6th ed. Hochberg, M. C., A. J. Silman, J. S. Smolen, M. E. Weinblatt et M. H. Weisman (Ed.). Philadelphia, Mosby, ELSEVIER; 2015, 1153-1158.

3. Steen, V. D. Autoantibodies in systemic sclerosis. – Semin Arthritis Rheum, 35, 2005, N 1, 35-42.

4. Chan, H. L., Y. S. Lee, H. S. Hong, et al. Anticentromere antibodies (ACA): clinical distribution and disease specificity. – Clin Exp Dermatol, 19, 1994, № 4, 298-302.

5. Spencer-Green G., D. Alter at H. G. Welch. Test performance in systemic sclerosis: anti-centromere and anti-Scl-70 antibodies. – Am J Med, 103, 1997, № 3, 242-248.

6. Mitri G. M., M. Lucas, N. Fertig, et al. A comparison between anti-Th/To- and anticentromere antibody-positive systemic sclerosis patients with limited cutaneous involvement. – Arthritis Rheum, 48, 2003, № 1, 203-209.

7. Tormey V. J., C. C. Bunn, C. P. Denton, et al. Anti-fibrillarin antibodies in systemic sclerosis. – Rheumatology (Oxford), 40, 2001, № 10, 1157-1162.

8. Fleischmajer R., J. S. Perlish et J. R. Reeves. Cellular infiltrates in scleroderma skin. – Arthritis Rheum, 20, 1977, № 4, 975-984.

9. Agarwal S. K., M. Wu, C. K. Livingston et al. Toll-like receptor 3 upregulation by type I interferon in healthy and scleroderma dermal fibroblasts. – Arthritis Research and Therapy, 13, 2011, № 1, R3.

10. Burt R. K., S. J. Shah, K. Dill K et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. – Lancet, 378, 2011, № 9790, 498-506.

11. Vonk M. C., Z. Marjanovic, F. H. van den Hoogen et al. Long-term follow-up results after autologous haematopoietic stem cell transplantation for severe systemic sclerosis. – Ann Rheum Dis, 67, 2008, № 1, 98-104.

12. Phelps R. G., C. Daian, S. Shibata et al. Induction of skin fibrosis and autoantibodies by infusion of immunocompetent cells from tight skin mice into C57BL/6 Pa/Pa mice. – J Autoimmun, 6, 1993, № 6, 701-718.

13. Huaux F., T. Liu, B. McGarry B et al. Eosinophils and T lymphocytes possess distinct roles in bleomycin-induced lung injury and fibrosis. – J Immunol, 171, 2003, № 10, 5470-5481.

14. Wilson M. S., S. K. Madala, T. R. Ramalingam et al. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. – J Exp Med, 207, 2010, № 3, 535-552.

15. Avouac J., B. G. Fürnrohr, M. Tomcik M et al. Inactivation of the transcription factor STAT-4 prevents inflammation-driven fibrosis in animal models of systemic sclerosis. – Arthritis Rheum, 63, 2011, № 3, 800-9.

16. Chizzolini C., N. C. Brembilla, E. Montanari et al. Fibrosis and immune dysregulation in systemic sclerosis. – Autoimmun Rev, 10, 2011, № 5, 276-281.

17. Mosmann T.R., H. Cherwinski, M. W. Bond et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. – J Immunol, 136, 1986, № 7, 2348-2357.

18. O’Garra A., L. Steinman et K. Gijbels. CD4+ T-cell subsets in autoimmunity. – Curr Opin Immunol, 9, 1997, № 6, 872-883.

19. Rengarajan J., S. J. Szabo, L. H. Glimcher. Transcriptional regulation of Th1/Th2 polarization. – Immunol Today, 21, 2000, № 10, 479-483.

20. Chung Y., S. H. Chang, G. J. Martinez et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. – Immunity, 30, 2009, № 4, 576-587.

21. Chen W. J., W. Jin, N. Hardegen et al. Conversion of Peripheral CD4+CD25− Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. – J Exp Med, 198, 2003, № 12, 1875-1886.

22. Zheng S. G., J. Wang, P. Wang et al. IL-2 Is Essential for TGF-β to Convert Naive CD4+CD25− Cells to CD25+Foxp3+ Regulatory T Cells and for Expansion of These Cells. – J Immunol, 178, 2007, № 4, 2018-2027.

23. Sato S., H. Hanakawa, M. Hasegawa et al. Levels of Interleukin 12, a Cytokine of Type 1 Helper T Cells, Are Elevated in Sera from Patients with Systemic Sclerosis. – J Rheumatol, 27, 2000, № 12, 2838-2842.

24. Mavalia C., C. Scaletti, P. Romagnani et al. Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis. – Am J Pathol, 151, 1997, № 6, 1751-1758.

25. Hasegawa M., M. Fujimoto, K. Kikuchi et K. Takehara. Elevated serum levels ofinterleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. – J Rheumatol, 24, 1997, 328-332.

26. Barron L., T. A. Wynn. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. – Am J Physiol Gastrointest Liver Physiol, 300, 2011, № 5, G723-728.

27. Alonso M. N., M. T. Wong, A. L. Zhang et al. TH1, TH2, and TH17 cells instruct monocytes to differentiate into specialized dendritic cell subsets. – Blood, 118, 2011, № 12, 3311-3320.

28. Higashi-Kuwata N., T. Makino, Y. Inoue et al. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma. – Exp Dermatol, 18, 2009, № 8, 727-729.

29. Granel B., C. Chevillard, A. Dessein. Interleukin 13 and interleukin 13 receptor involvement in systemic sclerosis. – Rev Med Interne, 28, 2007, № 9, 613-622.

30. Wurster A. L., V. L. Rodgers, A. R. Satoskar et al. Interleukin 21 Is a T Helper (Th) Cell 2 Cytokine that Specifically Inhibits the Differentiation of Naive Th Cells into Interferon γ–producing Th1 Cells. – J Exp Med, 196, 2002, № 7, 969-977.

31. Fossiez F., O. Djossou, P. Chomarat et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. – J Exp Med, 183, 1996, № 6, 2593-2603.

32. Kurasawa K., K. Hirose, H. Sano et al. Increased interleukin-17 production in patients with systemic sclerosis. – Arthritis Rheum, 43, 2000, № 11, 2455-2463.

33. Agarwal S. K., P. Gourh, S. Shete et al. Association of interleukin 23 receptor polymorphisms with anti-topoisomerase-I positivity and pulmonary hypertension in systemic sclerosis. – J Rheumatol, 36, 2009, № 12, 2715-2723.

34. Radstake T. R., L. van Bon, J. Broen et al. The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGF beta and IFN gamma distinguishes SSc phenotypes. – PLoS One, 4, 2009, № 6, e5903.

35. Duhen Th., R. Geiger, D. Jarrossay et al. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. – Nat Immunol, 10, 2009, № 8, 857-863.

36. Nistala K., L. R. Wedderburn. Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis. – Rheumatology, 48, 2009, № 6, 602-606.

37. Valencia X., G. Stephens, R. Goldbach-Mansky et al. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. – Blood, 108, 2006, № 1, 253-261.

38. Klein S., C. C. Kretz, V. Ruland et al. Reduction of regulatory T cells in skin lesions but not in peripheral blood of patients with systemic scleroderma. – Ann Rheum Dis, 70, 2010, № 8, 1475-1481.

39. Slobodin G., M. S. Ahmad, I. Rosner et al. Regulatory T cells (CD4+CD25brightFoxP3+) expansion in systemic sclerosis correlates with disease activity and severity. – Cell Immunol, 261, 2010, № 2, 77-80.

40. Radstake T. R. D. J., L. van Bon, J. Broen et al. Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFb expression. – PloS, 4, ONE 2009, № 6, e5981.

41. Parel Y., M. Aurrand-Lions, A. Scheja et al. Presence of CD4+ CD8+ double-positive T cells with very high interleukin-4 production potential in lesional skin of patients with systemic sclerosis. – Arthritis Rheum, 56, 2007, № 10, 3459-3467.

42. Atamas S. P., V. V. Yurovsky, R. Wise et al. Production of type 2 cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis. – Arthritis Rheum, 42, 1999, № 6, 1168-1178.

43. Fuschiotti P., A. T. Larregina, J. Ho et al. IL-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis. – Arthritis Rheum, 65, 2013, № 1, 236-246.

44. Baraut J., D. Farge, F. Jean-Louis. Cytokines in systemic sclerosis. – Pathol Biol (Paris), 60, 2012, № 2, 127-139.

45. Hasegawa M., M. Fujimoto, K. Kikuchi, K. Takehara. Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. – J Rheumatol, 24, 1997, 328-332.

46. Hasegawa M., S. Sato, K. Takehara. Augmented production of chemokines(monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta) in patients with systemic sclerosis: MCP-1and MIP-1alpha may be involved in the development of pulmonary fibrosis. – Clin Exp Immunol, 117, 1999, 159-165.

47. Scala E., S. Pallotta, A. Frezzolini et al. Cytokine and chemokine levels in systemic sclerosis: relationship with cutaneous and internal organ involvement. – Clin Exp Immunol, 138, 2004, 540-546.

48. Matsushita T., M. Fujimoto, M. Hasegawa et al. Elevated serum APRIL levels in patients with systemic sclerosis: distinct profiles ofsystemic sclerosis categorized by APRIL and BAFF. – J Rheumatol, 34, 2007, 2056-2062.

49. Yanaba K., A. Yoshizaki, E. Muroi et al. Elevated circulating TWEAK levels in systemic sclerosis: association with lower frequency of pulmonary fibrosis. – J Rheumatol, 36, 2009, 1657-1662.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 233 181 8
PDF Downloads 117 98 11