Phenotyping Root System Architecture of Cotton (Gossypium barbadense L.) Grown Under Salinity

Open access


Soil salinity causes an annual deep negative impact to the global agricultural economy. In this study, the effects of salinity on early seedling physiology of two Egyptian cotton (Gossypium barbadense L.) cultivars differing in their salinity tolerance were examined. Also the potential use of a low cost mini-rhizotron system to measure variation in root system architecture (RSA) traits existing in both cultivars was assessed. Salt tolerant cotton cultivar ‘Giza 90’ produced significantly higher root and shoot biomass, accumulated lower Na+/K+ ratio through a higher Na+ exclusion from both roots and leaves as well as synthesized higher proline contents compared to salt sensitive ‘Giza 45’ cultivar. Measuring RSA in mini-rhizotrons containing solid MS nutrient medium as substrate proved to be more precise and efficient than peat moss/sand mixture. We report superior values of main root growth rate, total root system size, main root length, higher number of lateral roots and average lateral root length in ‘Giza 90’ under salinity. Higher lateral root density and length together with higher root tissue tolerance of Na+ ions in ‘Giza 90’ give it an advantage to be used as donor genotype for desirable root traits to other elite cultivars.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ABOUKHEIR E. – SHESHSHAYEE M.S. – UDAYAKUMAR M. 2008. AAB International Conference on Resource Capture by Crops: Integrated Approach 14–16 September 2008 University of Nottingham at Sutton Bonington.

  • ABUL-NAAS A.A. – OMRAN M.S. 1974. Salt tolerance of seventeen cotton cultivars during germination and early seedling development. In Zeitschrift für Acker-und Pflanzenbau vol. 140 pp. 229–236.

  • AHMED F.M. 1994. Effect of saline water irrigation at different stages of growth on cotton plant. In Assiut Journal of Agricultural Sciences vol. 25 pp. 63–74.

  • ARMENGAUD P. – ZAMBAUX K. – HILLS A. – SULPICE R. – PATTISON R.J. – BLATT M.R. – AMTMANN A. 2009. EZ–Rhizo: integrated software for the fast and accurate measurement of root system architecture. In Plant Journal vol. 57 pp. 945–956. DOI: 10.1111/j.1365-313X.2008.03739.x

  • ASHOUR N.I. – ABD-EL’HAMID A.E.H.M. 1970. Relative salt tolerance of Egyptian cotton varieties during germination and early seedlings development. In Plant and Soil vol. 3 pp. 493–495. DOI: 10.1007/BF01378240

  • BASAL H. – BEBELI P. – SMITH C.W. – THAXTON P. 2003. Root growth parameters of converted race stocks of upland cotton and two BC2F2 populations. In Crop Science vol. 43 pp. 1983–1988. DOI:10.2135/cropsci2003.1983

  • BATES L.S. – WALDEEN R.P. – TEARE I.D. 1973. Rapid determination of free proline for water-stress studies. In Plant and Soil vol. 39 pp. 205–207. DOI: 10.1007/BF00018060

  • DARWISH E. – MOTTALEB S.A. – OMARA M. – SAFWAT G. 2016. Effect of salt stress on root plasticity and expression of ion transporter genes in tomato plants. In International Journal of Botany and Research (IJBR) vol. 6 pp. 13–26. Available from:

  • DAVENPORT R.J. – MUNOZ-MAYOR A. – JHA D. – ESSAH P.A. – RUS A. – TESTER M. 2007. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. In Plant Cell and Environment vol. 30 pp. 497–507. DOI: 10.1111/j.1365-3040.2007.01637.x

  • DEVIENNE-BARRET F. – RICHARD-MOLARD C. – CHELLE M. – MAURY O. – NEY B. 2006. Ara-rhizotron: An effective culture system to study simultaneously root and shoot development of Arabidopsis. In Plant and Soil vol. 280 pp. 253–266. DOI: 10.1007/s11104-005-3224-1

  • EL-KADI D.A. – AFIAH S.A. – ALY M.A. – BADRAN A.E. 2006. Bulked segregant analysis to develop molecular markers for salt tolerance in Egyptian cotton. In Arab Journal of Biotechnology vol. 9 pp. 129–142. Available from:

  • EL-ZAHAB A.A.A. 1971. Salt tolerance of eight Egyptian cotton varieties. Part II. At the seedling stage. In Zeitschrift für Acker- und Pflanzenbau vol. 133 pp. 308–314.

  • GARCIADEBLAS B. – SENN M.E. – BANUELOS M.A. – RODRÍGUEZ-NAVARRO A. 2003. Sodium transport and HKT transporters: the rice model. In Plant Journal vol. 34 pp. 788–801. DOI: 10.1046/j.1365-313X.2003.01764.x

  • GORHAM J. – LAUCHLI A. – LEIDI E.O. 2010. Plant responses to salinity. In STEWART J.M. ‒ OOSTERHUIS D.M. ‒ HEITHOLT J.J. ‒ MAUNEY J.R. (Eds.) Physiology of Cotton. London : Springer pp. 129–141. DOI: 10.1007/978-90-481-3195-2_13

  • HE G. – SHEN G. – PASAPULA V. – LUO J. – VENKATARAMANI S. – QIU X. – KUPPU S. – KORNYEYEV D. – HOLADAY A.S. – AULD D. – BLUMWALD E. – ZHANG H. 2007. Ectopic expression of AtNHX1 in cotton (Gossypium hirsutum L.) increases proline content and enhances photosynthesis under salt stress conditions. In Journal of Cotton Science vol. 11 pp. 266–274. Available from:

  • JULKOWSKA M.M. – TESTERINK C. 2015. Tuning plant signaling and growth to survive salt. In Trends in Plant Science vol. 20 pp. 586–594. DOI:

  • KARLEY A.J. – LEIGH R.A. – SANDERS D. 2000. Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. In Plant Physiology vol. 122 pp. 835–844. DOI: 10.1104/pp.122.3.835.

  • MUNNS R. – TESTER M. 2008. Mechanisms of salinity tolerance. In Annual Review of Plant Biology vol. 59 pp. 651–681. DOI: 10.1146/annurev.arplant.59.032607.092911

  • MURASHIGE T. – SKOOG F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. In Physiologiae Plantarum vol. 15 pp. 473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x

  • OOSTERHUIS D.M. – WULLSCHLEGER S.D. 1988. Drought tolerance and osmotic adjustment of various crops in response to water stress. In Arkansas Farm Research vol. 37 pp. 12.

  • PACE P.F. – CRALLE H.T. – EL-HALAWANY S.H. – COTHREN J.T. – SENSEMAN S.A. 1999. Drought-induced changes in shoot and root growth of young cotton plants. In Journal of Cotton Science vol. 3 pp. 183–187. Available from [accessed 23 July 2016].

  • QADIR M. – QUILLÉROU E. – NANGIA V. – MURTAZA G. – SINGH M. – THOMAS R.J. – DRECHSEL P. – NOBLE A.D. 2014. Economics of salt-induced land degradation and restoration. In Natural Resources Forum vol. 38 pp. 282–295. DOI: 10.1111/1477-8947.12054

  • QUISENBERRY J.E. – JORDAN W.R. – ROARK B.A. – FRYREAR D.W. 1981. Exotic cottons as genetic sources for drought resistance. In Crop Science vol. 21 pp. 889–895. DOI:10.2135/cropsci1981.0011183X002100060022x

  • QUISENBERRY J.E. – ROARK B.A. – McMICHAEL B.L. 1982. Use of transpiration decline curves to identify drought-tolerant cotton germplasm. In Crop Science vol. 22 pp. 918–922. DOI:10.2135/cropsci1982.0011183X002200050004x

  • ROY S.J. – NEGRÃO S. – TESTER M. 2014. Salt resistant crop plants. In Current Opinion in Biotechnology vol. 26 pp. 115–124. DOI: 10.1016/j.copbio.2013.12.004

  • SHABALA S. – CUIN T.A. 2008. Potassium transport and plant salt tolerance. In Physiologiae Plantarum vol. 133 pp. 651–669. DOI: 10.1111/j.1399-3054.2007.01008.x

  • SHABALA S. – MUNNS R. 2012. Salinity stress: physiological constraints and adaptive mechanisms. In SHABALA S. (Ed.) Plant Stress Physiology. Oxfod : CAB International pp. 59–93. DOI: 10.1079/9781845939953.0059

  • SINCLAIR T.R. – LUDLOW M.M. 1985. Who taught plants thermodynamics? The unfulfilled potential of plant water potential. In Australian Journal of Plant Physiology vol. 12 pp. 213–218. DOI: 10.1071/PP9850213

  • STEELE K.A. – PRICE. A.H. – WITCOMBE J.R. – SHRESTHA R. – SINGH B.N. – GIBBONS J.M. – VIRK D.S. 2013. QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. In Theoretical and Applied Genetics vol. 126 pp. 101–108. DOI: 10.1007/s00122-012-1963-y

  • TAYLOR H.M. – UPCHURCH D.R. – BROWN J.M. – ROGERS H.H. 1991. Some methods of root investigation. In McMICHAEL B.L. ‒ PERSSON H. (Eds.) Plant roots and Their Environment. New York : Elsevier Science Publishers Inc. pp. 553–564. DOI:10.1016/B978-0-444-89104-4.50075-X

  • TUBEROSA R. – SANGUINETI M.C. – LANDI P. – GIULIANI M.M. – SALVI S. – CONTI S. 2002. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. In Plant Molecular Biology vol. 48 pp. 697–712. DOI: 10.1023/A:1014897607670

  • UDAYAKUMAR M. – RAO R.C.N. – WRIGHT G.C. – RAMASWAMY G.C. – ASHOK R.S. – GANGADHAR G.C. – AFTAB HUSSAIN I.S. 1998. Measurement of transpiration efficiency in field conditions. In Journal of Plant Physiology and Biochemistry vol. 1 pp. 69–75.

  • UGA Y. – SUGIMOTO K. – OGAWA S. – RANE J. – ISHITANI M. – HARA N. – KITOMI Y. – INUKAI Y. – ONO K. – KANNO N. – INOUE H. 2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. In Nature Genetics vol. 45 pp. 1097–1102. DOI:10.1038/ng.2725

  • WEATHERLY P.E. 1950. Studies in the water relations of the cotton plant. The field measurement of water deficits in leaves. In New Phytologist vol. 49 pp. 81–97. DOI: 10.1111/j.1469-8137.1950.tb05146.x

  • ZHONG H. – LAUCHLI A. 1993. Spatial and temporal aspects of growth in the primary root of cotton seedlings: Effects of NaCl and CaCl2. In Journal of Experimental Botany vol. 44 pp. 763–771. DOI: 10.1093/jxb/44.4.763

Impact Factor

CiteScore 2018: 0.81

SCImago Journal Rank (SJR) 2018: 0.248
Source Normalized Impact per Paper (SNIP) 2018: 0.535

Gesamte Zeit Letztes Jahr Letzte 30 Tage
Abstract Views 0 0 0
Full Text Views 470 241 13
PDF Downloads 264 134 7