Open Access

Phenotyping Root System Architecture of Cotton (Gossypium barbadense L.) Grown Under Salinity


Cite

ABOUKHEIR, E. – SHESHSHAYEE, M.S. – UDAYAKUMAR, M. 2008. AAB International Conference on Resource Capture by Crops: Integrated Approach, 14–16 September 2008, University of Nottingham at Sutton Bonington.Search in Google Scholar

ABUL-NAAS, A.A. – OMRAN, M.S. 1974. Salt tolerance of seventeen cotton cultivars during germination and early seedling development. In Zeitschrift für Acker-und Pflanzenbau, vol. 140, pp. 229–236.Search in Google Scholar

AHMED, F.M. 1994. Effect of saline water irrigation at different stages of growth on cotton plant. In Assiut Journal of Agricultural Sciences, vol. 25, pp. 63–74.Search in Google Scholar

ARMENGAUD, P. – ZAMBAUX, K. – HILLS, A. – SULPICE, R. – PATTISON, R.J. – BLATT, M.R. – AMTMANN, A. 2009. EZ–Rhizo: integrated software for the fast and accurate measurement of root system architecture. In Plant Journal, vol. 57, pp. 945–956. DOI: 10.1111/j.1365-313X.2008.03739.x10.1111/j.1365-313X.2008.03739.x19000163Open DOISearch in Google Scholar

ASHOUR, N.I. – ABD-EL’HAMID, A.E.H.M. 1970. Relative salt tolerance of Egyptian cotton varieties during germination and early seedlings development. In Plant and Soil, vol. 3, pp. 493–495. DOI: 10.1007/BF0137824010.1007/BF01378240Open DOISearch in Google Scholar

BASAL, H. – BEBELI, P. – SMITH, C.W. – THAXTON, P. 2003. Root growth parameters of converted race stocks of upland cotton and two BC2F2 populations. In Crop Science, vol. 43, pp. 1983–1988. DOI:10.2135/cropsci2003.198310.2135/cropsci2003.1983Open DOISearch in Google Scholar

BATES, L.S. – WALDEEN, R.P. – TEARE, I.D. 1973. Rapid determination of free proline for water-stress studies. In Plant and Soil, vol. 39, pp. 205–207. DOI: 10.1007/BF0001806010.1007/BF00018060Open DOISearch in Google Scholar

DARWISH, E. – MOTTALEB, S.A. – OMARA, M. – SAFWAT, G. 2016. Effect of salt stress on root plasticity and expression of ion transporter genes in tomato plants. In International Journal of Botany and Research (IJBR), vol. 6, pp. 13–26. Available from: https://www.researchgate.net/profile/Heba_Ibrahim4/publication/299289414_EFFECT_OF_SALT_STRESS_ON_ROOT_PLASTICITY_AND_EXPRESSION_OF_ION_TRANSPORTER_GENES_IN_TOMATO_PLANTS/links/570d581a08ae2b772e43200e/EFFECT-OF-SALT-STRESS-ON-ROOT-PLASTICITY-AND-EXPRESSION-OF-ION-TRANSPORTER-GENES-IN-TOMATO-PLANTS.pdfSearch in Google Scholar

DAVENPORT, R.J. – MUNOZ-MAYOR, A. – JHA, D. – ESSAH, P.A. – RUS, A. – TESTER, M. 2007. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. In Plant, Cell and Environment, vol. 30, pp. 497–507. DOI: 10.1111/j.1365-3040.2007.01637.x10.1111/j.1365-3040.2007.01637.x17324235Open DOISearch in Google Scholar

DEVIENNE-BARRET, F. – RICHARD-MOLARD, C. – CHELLE, M. – MAURY, O. – NEY, B. 2006. Ara-rhizotron: An effective culture system to study simultaneously root and shoot development of Arabidopsis. In Plant and Soil, vol. 280, pp. 253–266. DOI: 10.1007/s11104-005-3224-110.1007/s11104-005-3224-1Open DOISearch in Google Scholar

EL-KADI, D.A. – AFIAH, S.A. – ALY, M.A. – BADRAN, A.E. 2006. Bulked segregant analysis to develop molecular markers for salt tolerance in Egyptian cotton. In Arab Journal of Biotechnology, vol. 9, pp. 129–142. Available from: https://www.researchgate.net/profile/Mohammed_Aly2/publication/228936120_Bulked_segregant_analysis_to_develop_molecular_markers_for_salt_tolerance_in_Egyptian_cotton/links/0c96052de7b9fcfc03000000.pdfSearch in Google Scholar

EL-ZAHAB, A.A.A. 1971. Salt tolerance of eight Egyptian cotton varieties. Part II. At the seedling stage. In Zeitschrift für Acker- und Pflanzenbau, vol. 133, pp. 308–314.Search in Google Scholar

GARCIADEBLAS, B. – SENN, M.E. – BANUELOS, M.A. – RODRÍGUEZ-NAVARRO, A. 2003. Sodium transport and HKT transporters: the rice model. In Plant Journal, vol. 34, pp. 788–801. DOI: 10.1046/j.1365-313X.2003.01764.x10.1046/j.1365-313X.2003.01764.xOpen DOISearch in Google Scholar

GORHAM, J. – LAUCHLI, A. – LEIDI, E.O. 2010. Plant responses to salinity. In STEWART, J.M. ‒ OOSTERHUIS, D.M. ‒ HEITHOLT, J.J. ‒ MAUNEY, J.R. (Eds.) Physiology of Cotton. London : Springer, pp. 129–141. DOI: 10.1007/978-90-481-3195-2_1310.1007/978-90-481-3195-2_13Open DOISearch in Google Scholar

HE, G. – SHEN, G. – PASAPULA, V. – LUO, J. – VENKATARAMANI, S. – QIU, X. – KUPPU, S. – KORNYEYEV, D. – HOLADAY, A.S. – AULD, D. – BLUMWALD, E. – ZHANG, H. 2007. Ectopic expression of AtNHX1 in cotton (Gossypium hirsutum L.) increases proline content and enhances photosynthesis under salt stress conditions. In Journal of Cotton Science, vol. 11, pp. 266–274. Available from: http://www.cotton.org/journal/2007-11/4/upload/jcs11-266.pdfSearch in Google Scholar

JULKOWSKA, M.M. – TESTERINK, C. 2015. Tuning plant signaling and growth to survive salt. In Trends in Plant Science, vol. 20, pp. 586–594. DOI: http://dx.doi.org/10.1016/j.tplants.2015.06.00810.1016/j.tplants.2015.06.00826205171Open DOISearch in Google Scholar

KARLEY, A.J. – LEIGH, R.A. – SANDERS, D. 2000. Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley. In Plant Physiology, vol. 122, pp. 835–844. DOI: 10.1104/pp.122.3.835.10.1104/pp.122.3.8355891910712547Open DOISearch in Google Scholar

MUNNS, R. – TESTER, M. 2008. Mechanisms of salinity tolerance. In Annual Review of Plant Biology, vol. 59, pp. 651–681. DOI: 10.1146/annurev.arplant.59.032607.09291110.1146/annurev.arplant.59.032607.09291118444910Open DOISearch in Google Scholar

MURASHIGE, T. – SKOOG, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. In Physiologiae Plantarum, vol. 15, pp. 473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x10.1111/j.1399-3054.1962.tb08052.xOpen DOISearch in Google Scholar

OOSTERHUIS, D.M. – WULLSCHLEGER, S.D. 1988. Drought tolerance and osmotic adjustment of various crops in response to water stress. In Arkansas Farm Research, vol. 37, pp. 12.Search in Google Scholar

PACE, P.F. – CRALLE, H.T. – EL-HALAWANY, S.H. – COTHREN, J.T. – SENSEMAN, S.A. 1999. Drought-induced changes in shoot and root growth of young cotton plants. In Journal of Cotton Science, vol. 3, pp. 183–187. Available from https://www.cotton.org/journal/1999-03/4/upload/jcs03-183.pdf. [accessed 23 July 2016].Search in Google Scholar

QADIR, M. – QUILLÉROU, E. – NANGIA, V. – MURTAZA, G. – SINGH, M. – THOMAS, R.J. – DRECHSEL, P. – NOBLE, A.D. 2014. Economics of salt-induced land degradation and restoration. In Natural Resources Forum, vol. 38, pp. 282–295. DOI: 10.1111/1477-8947.1205410.1111/1477-8947.12054Open DOISearch in Google Scholar

QUISENBERRY, J.E. – JORDAN, W.R. – ROARK, B.A. – FRYREAR, D.W. 1981. Exotic cottons as genetic sources for drought resistance. In Crop Science, vol. 21, pp. 889–895. DOI:10.2135/cropsci1981.0011183X002100060022x10.2135/cropsci1981.0011183X002100060022xOpen DOISearch in Google Scholar

QUISENBERRY, J.E. – ROARK, B.A. – McMICHAEL, B.L. 1982. Use of transpiration decline curves to identify drought-tolerant cotton germplasm. In Crop Science, vol. 22, pp. 918–922. DOI:10.2135/cropsci1982.0011183X002200050004x10.2135/cropsci1982.0011183X002200050004xOpen DOISearch in Google Scholar

ROY, S.J. – NEGRÃO, S. – TESTER, M. 2014. Salt resistant crop plants. In Current Opinion in Biotechnology, vol. 26, pp. 115–124. DOI: 10.1016/j.copbio.2013.12.00410.1016/j.copbio.2013.12.00424679267Open DOISearch in Google Scholar

SHABALA, S. – CUIN, T.A. 2008. Potassium transport and plant salt tolerance. In Physiologiae Plantarum, vol. 133, pp. 651–669. DOI: 10.1111/j.1399-3054.2007.01008.x10.1111/j.1399-3054.2007.01008.x18724408Open DOISearch in Google Scholar

SHABALA, S. – MUNNS, R. 2012. Salinity stress: physiological constraints and adaptive mechanisms. In SHABALA, S. (Ed.) Plant Stress Physiology. Oxfod : CAB International, pp. 59–93. DOI: 10.1079/9781845939953.005910.1079/9781845939953.0059Open DOISearch in Google Scholar

SINCLAIR, T.R. – LUDLOW, M.M. 1985. Who taught plants thermodynamics? The unfulfilled potential of plant water potential. In Australian Journal of Plant Physiology, vol. 12, pp. 213–218. DOI: 10.1071/PP985021310.1071/PP9850213Open DOISearch in Google Scholar

STEELE, K.A. – PRICE. A.H. – WITCOMBE, J.R. – SHRESTHA, R. – SINGH, B.N. – GIBBONS, J.M. – VIRK, D.S. 2013. QTLs associated with root traits increase yield in upland rice when transferred through marker-assisted selection. In Theoretical and Applied Genetics, vol. 126, pp. 101–108. DOI: 10.1007/s00122-012-1963-y10.1007/s00122-012-1963-y22968512Open DOISearch in Google Scholar

TAYLOR, H.M. – UPCHURCH, D.R. – BROWN, J.M. – ROGERS, H.H. 1991. Some methods of root investigation. In McMICHAEL, B.L. ‒ PERSSON, H. (Eds.) Plant roots and Their Environment. New York : Elsevier Science Publishers, Inc., pp. 553–564. DOI:10.1016/B978-0-444-89104-4.50075-X10.1016/B978-0-444-89104-4.50075-XOpen DOISearch in Google Scholar

TUBEROSA, R. – SANGUINETI, M.C. – LANDI, P. – GIULIANI, M.M. – SALVI, S. – CONTI, S. 2002. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. In Plant Molecular Biology, vol. 48, pp. 697–712. DOI: 10.1023/A:101489760767010.1023/A:1014897607670Open DOISearch in Google Scholar

UDAYAKUMAR, M. – RAO, R.C.N. – WRIGHT, G.C. – RAMASWAMY, G.C. – ASHOK, R.S. – GANGADHAR, G.C. – AFTAB HUSSAIN, I.S. 1998. Measurement of transpiration efficiency in field conditions. In Journal of Plant Physiology and Biochemistry, vol. 1, pp. 69–75.Search in Google Scholar

UGA, Y. – SUGIMOTO, K. – OGAWA, S. – RANE, J. – ISHITANI, M. – HARA, N. – KITOMI, Y. – INUKAI, Y. – ONO, K. – KANNO, N. – INOUE, H. 2013. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. In Nature Genetics, vol. 45, pp. 1097–1102. DOI:10.1038/ng.272510.1038/ng.272523913002Open DOISearch in Google Scholar

WEATHERLY, P.E. 1950. Studies in the water relations of the cotton plant. The field measurement of water deficits in leaves. In New Phytologist, vol. 49, pp. 81–97. DOI: 10.1111/j.1469-8137.1950.tb05146.x10.1111/j.1469-8137.1950.tb05146.xOpen DOISearch in Google Scholar

ZHONG, H. – LAUCHLI, A. 1993. Spatial and temporal aspects of growth in the primary root of cotton seedlings: Effects of NaCl and CaCl2. In Journal of Experimental Botany, vol. 44, pp. 763–771. DOI: 10.1093/jxb/44.4.76310.1093/jxb/44.4.763Open DOISearch in Google Scholar

eISSN:
1338-4376
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Ecology, other