Problems of Pad Welding Structural Steels with Martensitic Filler Metal

Abstract

There is a problem in obtaining a suitable impact strength of the padding weld after cladding with a martensitic filler metal. Too low annealing temperature below 580°C and the excessive annealing temperature above 650°C do not provide adequate impact strength of the padding weld. A heat treatment technology for mixed joints has been developed based on the results of the microscopic observations, X-ray diffraction measurements and transmission electron microscope examination. The problem was identified and a special technology of heat treatment for the dissimilar joint was elaborated. This technology provides a high impact resistance of the padding weld and an appropriate properties of the base material.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Marshall A. W., Farrar J. C. M., Welding of ferritic and martensitic 11–14%Cr steels. Welding in the World, 45 (2001) 32–55.

  • 2. Tuz L., Evaluation of microstructure and selected mechanical properties of laser beam welded S690QL high-strength steel. Advances in Materials Science, 18(3) (2018) 34–42.

  • 3. Rakoczy Ł., Grudzień M., Tuz L., Pańcikiewicz K., Zielińska-Lipiec A., Microstructure and properties of a repair weld in a nickel based superalloy gas turbine component. Advances in Materials Science, 17(2) (2017) 55–63.

  • 4. Pańcikiewicz K., Structure and properties of welded joints of 7CrMoVTiB10-10 (T24) steel. Advances in Materials Science, 18(1) (2018) 37–47.

  • 5. Tavaresa S.S.M., Norisc L.F., Pardalb J.M., da Silvad M.R., Temper embrittlement of supermartensitic stainless steel and non-destructive inspection by magnetic Barkhausen noise. Engineering Failure Analysis Journal, 100 (2019) 322–328.

  • 6. Foroozmehra F., Verremana Y., Chena J., Thibaultb D., Bocher P., Effect of inclusions on fracture behavior of cast and wrought 13% Cr-4% Ni martensitic stainless steels. Engineering Fracture Mechanics, 175 (2017) 262–278.

  • 7. Gooch G. T., Heat treatment of welded 13% Cr – 4% Ni martensitic stainless steel for sour service. Welding Journal, 74 (1995) 213 ÷223.

  • 8. Liu Y., Ye D., Yong Q., Su J., Zhao K., Jiang W., Effect of heat treatment on microstructure and property of Cr13 super martensitic stainless steel. Journal Iron and Steel Research International, 18 (2011) 60–66.

  • 9. Jiang W., Zhao K., Ye D., Li J., Li Z., Su J., Effect of heat treatment on reversed austenite in Cr15 super martensitic stainless steel. Journal Iron and Steel Research International, 20 (2013) 61–65.

  • 10. Escobar J. D., Poplawsky J. D., Faria G. A., Rodriguez J., Ramirez A. J., Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: Segregation, partitioning and carbide precipitation. Materials & Design, 140 (2018) 95–105.

  • 11. Wang P., Xiao N., Lu S., Li D., Li Y., Investigation of the mechanical stability of reversed austenitein 13%Cr–4%Ni martensitic stainless steel during the uniaxialtensile test. Materials Science & Engineering A, 586 (2013) 292–300.

  • 12. Zhang S., Wang P., Li D., Li Y., Investigation of the evolution of retained in Fe–%Cr–%Ni martensitic stainless steel during intercritical tempering austenite 13 4. Materials & Design, 84 (2015) 385–394.

  • 13. De Sanctis M., Lovicu G., Buccioni M., Donato A., Richetta M., Varone A., Study of 13Cr-4Ni-(Mo) (F6NM) Steel Grade Heat Treatment for Maximum Hardness Control in Industrial Heats. Metals, 7, 351 (2017) 1–14.

  • 14. Ziewiec A., Zielińska-Lipiec A., Kowalska J., Ziewiec K., Microstructure Characterization of Welds in X5CrNiCuNb16-4 Steel in Overaged Condition. Advances in Materials Science, 19(1) (2019) 57–69.

  • 15. Man C., Dong C., Kong D., Wang L., Li X. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel. Corrosion Science, 151 (2019) 108–121.

  • 16. Chellappan M., Lingadurai K., Sathiya P. Characterization and Optimization of TIG welded supermartensitic stainless steel using TOPSIS. Materials Today: Proc., 4 (2017) 1662–1669.

  • 17. Tavares S.S.M., Silva M.B., de Macêdo M.C.S., Strohaecker T.R., Costa V.M. Characterization of fracture behavior of a Ti alloyed supermartensitic 12%Cr stainless steel using Charpy instrumented impact tests. Engineering Failure Analysis, 82 (2017) 695–702

  • 18. Gulvin T., F.; Scott J. i inni: The influence of stress relief on the properties of C and C-Mn pressure-vessel plate steels, J. West. Scott. Iron Steel Inst. 80 (1972–73) 149–175.

  • 19. Lochhead J., C., Speirs A., The effects of heat treatment on pressure-vessel steels, J. West. Scott. Iron Steel Inst., 80 (1972–73) 188–219.

  • 20. Watkins B. i inni Effects of prolonged stress relieving treatments on the properties of reactor pressure – vessel steels, British Weld. Journ., 10 (1963) 15–21.

  • 21. Tasak E. The influence of heat treatment on the properties of joints, Przegląd Spawalnictwa 62 (1990) 1–4 , in Polish.

  • 22. Wątróbska B, Tasak E, Structure and properties of welded joints of chromium-nickel stainless steels containing soft martensite. Transactions of the Conference “Materials Engineering Yesterday, Today and Tomorrow” AGH, Krakow, 2005, 103–106, in Polish.

  • 23. Hayes C., Patrick D. H., Hardness conversion data for CA6NM alloy. Metallography, 16 (1983) 229–235.

OPEN ACCESS

Journal + Issues

Search