Open Access

Problems of Pad Welding Structural Steels with Martensitic Filler Metal


Cite

1. Marshall A. W., Farrar J. C. M., Welding of ferritic and martensitic 11–14%Cr steels. Welding in the World, 45 (2001) 32–55.Search in Google Scholar

2. Tuz L., Evaluation of microstructure and selected mechanical properties of laser beam welded S690QL high-strength steel. Advances in Materials Science, 18(3) (2018) 34–42.10.1515/adms-2017-0039Search in Google Scholar

3. Rakoczy Ł., Grudzień M., Tuz L., Pańcikiewicz K., Zielińska-Lipiec A., Microstructure and properties of a repair weld in a nickel based superalloy gas turbine component. Advances in Materials Science, 17(2) (2017) 55–63.10.1515/adms-2017-0011Search in Google Scholar

4. Pańcikiewicz K., Structure and properties of welded joints of 7CrMoVTiB10-10 (T24) steel. Advances in Materials Science, 18(1) (2018) 37–47.10.1515/adms-2017-0026Search in Google Scholar

5. Tavaresa S.S.M., Norisc L.F., Pardalb J.M., da Silvad M.R., Temper embrittlement of supermartensitic stainless steel and non-destructive inspection by magnetic Barkhausen noise. Engineering Failure Analysis Journal, 100 (2019) 322–328.10.1016/j.engfailanal.2019.02.034Search in Google Scholar

6. Foroozmehra F., Verremana Y., Chena J., Thibaultb D., Bocher P., Effect of inclusions on fracture behavior of cast and wrought 13% Cr-4% Ni martensitic stainless steels. Engineering Fracture Mechanics, 175 (2017) 262–278.10.1016/j.engfracmech.2017.02.002Search in Google Scholar

7. Gooch G. T., Heat treatment of welded 13% Cr – 4% Ni martensitic stainless steel for sour service. Welding Journal, 74 (1995) 213 ÷223.Search in Google Scholar

8. Liu Y., Ye D., Yong Q., Su J., Zhao K., Jiang W., Effect of heat treatment on microstructure and property of Cr13 super martensitic stainless steel. Journal Iron and Steel Research International, 18 (2011) 60–66.10.1016/S1006-706X(11)60118-0Search in Google Scholar

9. Jiang W., Zhao K., Ye D., Li J., Li Z., Su J., Effect of heat treatment on reversed austenite in Cr15 super martensitic stainless steel. Journal Iron and Steel Research International, 20 (2013) 61–65.10.1016/S1006-706X(13)60099-0Search in Google Scholar

10. Escobar J. D., Poplawsky J. D., Faria G. A., Rodriguez J., Ramirez A. J., Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: Segregation, partitioning and carbide precipitation. Materials & Design, 140 (2018) 95–105.10.1016/j.matdes.2017.11.055Search in Google Scholar

11. Wang P., Xiao N., Lu S., Li D., Li Y., Investigation of the mechanical stability of reversed austenitein 13%Cr–4%Ni martensitic stainless steel during the uniaxialtensile test. Materials Science & Engineering A, 586 (2013) 292–300.10.1016/j.msea.2013.08.028Search in Google Scholar

12. Zhang S., Wang P., Li D., Li Y., Investigation of the evolution of retained in Fe–%Cr–%Ni martensitic stainless steel during intercritical tempering austenite 13 4. Materials & Design, 84 (2015) 385–394.10.1016/j.matdes.2015.06.143Search in Google Scholar

13. De Sanctis M., Lovicu G., Buccioni M., Donato A., Richetta M., Varone A., Study of 13Cr-4Ni-(Mo) (F6NM) Steel Grade Heat Treatment for Maximum Hardness Control in Industrial Heats. Metals, 7, 351 (2017) 1–14.10.3390/met7090351Search in Google Scholar

14. Ziewiec A., Zielińska-Lipiec A., Kowalska J., Ziewiec K., Microstructure Characterization of Welds in X5CrNiCuNb16-4 Steel in Overaged Condition. Advances in Materials Science, 19(1) (2019) 57–69.10.2478/adms-2019-0005Search in Google Scholar

15. Man C., Dong C., Kong D., Wang L., Li X. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel. Corrosion Science, 151 (2019) 108–121.10.1016/j.corsci.2019.02.020Search in Google Scholar

16. Chellappan M., Lingadurai K., Sathiya P. Characterization and Optimization of TIG welded supermartensitic stainless steel using TOPSIS. Materials Today: Proc., 4 (2017) 1662–1669.10.1016/j.matpr.2017.02.005Search in Google Scholar

17. Tavares S.S.M., Silva M.B., de Macêdo M.C.S., Strohaecker T.R., Costa V.M. Characterization of fracture behavior of a Ti alloyed supermartensitic 12%Cr stainless steel using Charpy instrumented impact tests. Engineering Failure Analysis, 82 (2017) 695–70210.1016/j.engfailanal.2017.06.002Search in Google Scholar

18. Gulvin T., F.; Scott J. i inni: The influence of stress relief on the properties of C and C-Mn pressure-vessel plate steels, J. West. Scott. Iron Steel Inst. 80 (1972–73) 149–175.Search in Google Scholar

19. Lochhead J., C., Speirs A., The effects of heat treatment on pressure-vessel steels, J. West. Scott. Iron Steel Inst., 80 (1972–73) 188–219.Search in Google Scholar

20. Watkins B. i inni Effects of prolonged stress relieving treatments on the properties of reactor pressure – vessel steels, British Weld. Journ., 10 (1963) 15–21.Search in Google Scholar

21. Tasak E. The influence of heat treatment on the properties of joints, Przegląd Spawalnictwa 62 (1990) 1–4 , in Polish.Search in Google Scholar

22. Wątróbska B, Tasak E, Structure and properties of welded joints of chromium-nickel stainless steels containing soft martensite. Transactions of the Conference “Materials Engineering Yesterday, Today and Tomorrow” AGH, Krakow, 2005, 103–106, in Polish.Search in Google Scholar

23. Hayes C., Patrick D. H., Hardness conversion data for CA6NM alloy. Metallography, 16 (1983) 229–235.10.1016/0026-0800(83)90006-XSearch in Google Scholar

eISSN:
2083-4799
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials