Branched PLGA derivatives with tailored drug delivery properties

Open access


Despite several shortcomings such as extreme hydrophobicity, low drug capacity, characteristic triphasic drug release pattern with a high burst effect, poly(lactic-co-glycolic acid derivatives are widely used in drug delivery. Most frequent attempts to improve their properties are blending with other polymers or synthesis of block copolymers. We introduce a new class of branched poly(lactic-co-glycolic acid) derivatives as promising biodegradable carriers for prolonged or targeted drug release systems, employed as thin adhesive films, solid dispersions, in situ forming implants or nanoparticles. A series of poly(lactic-co-glycolic acid) derivatives with lower molar mass and star or comb architecture were synthesized by a simple, catalyst free, direct melt polycondensation method not requiring purification of the obtained sterile product by precipitation. Branching monomers used were mannitol, pentaerythritol, dipentaerythritol, tripentaerythritol and polyacrylic acid. The products were characterized by molar mass averages, average branching ratio, rheological and thermal properties.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. P. Gentile V. Chiono I. Carmagnola and P. V. Hatton An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering Int. J. Mol. Sci. 15 (2014) 3640–3659;

  • 2. D. J. Hines and D. L. Kaplan Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights Crit. Rev. Ther. Drug Carrier Syst. 30 (2013) 257–276;

  • 3. H. K. Makadia and S. J. Siegel Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier Polymers 3 (2011) 1377–1397;

  • 4. E. Swider O. Koshkina J. Tel L. J. Cruz I. J. M. de Vries and M. Srinivas Customizing poly(lacticco-glycolic acid) particles for biomedical applications Acta Biomater. 73 (2018) 38–51;

  • 5. F. Danhier E. Ansorena J. M. Silva R. Coco A. Le Breton and V. Préat PLGA-based nanoparticles: an overview of biomedical applications J. Control. Release 161 (2012) 505–522;

  • 6. B. S. Nagoba N. M. Suryawanshi B. Wadher and S. Selkar Acidic environment and wound healing: a review Wounds 27 (2015) 5–11.

  • 7. L. A. Dailey and T. Kissel New poly(lactic-co-glycolic acid) derivatives: Modular polymers with tailored properties Drug Discov. Today Technol. 2 (2005) 7–13;

  • 8. E. Snejdrova M. Drastik M. Dittrich P. Kastner and J. Nguyenova Mucoadhesive plasticized system of branched poly(lactic-co-glycolic acid) with aciclovir Drug Dev. Ind. Pharm. 42 (2016) 1653–1659;

  • 9. E. Snejdrova M. Drastik and M. Dittrich Plasticized branched aliphatic oligoesters as potential mucoadhesive drug carriers Int. J. Pharm. 458 (2013) 282–286;

  • 10. M. Ajioka H. Suizu C. Higuchi and T. Kashima Aliphatic polyesters and their copolymers synthesized through direct condensation polymerization Polym. Degrad. Stab. 59 (1998) 137–143;

  • 11. C. K. Williams Synthesis of functionalized biodegradable polyesters Chem. Soc. Rev. 36 (2007) 1573–1580;

  • 12. A. Alla K. Hakkou F. Zamora A. Martínez de Ilarduya J. A. Galbis and S. Muñoz-Guerra Poly(butylene terephthalate) Copolyesters Derived from l-Arabinitol and Xylitol Macromolecules 39 (2006) 1410–1416;

  • 13. M. G. García-Martín R. R. Pérez E. B. Hernández and J. A. Galbis Linear polyesters of the poly[alkylene (and co-arylene) dicarboxylate] type derived from carbohydrates Macromolecules 39 (2006) 7941–7949;

  • 14. J. Hu W. Gao A. Kulshrestha and R. A. Gross “Sweet polyesters”: lipase-catalyzed condensation-polymerizations of alditols Macromolecules 39 (2006) 6789–6792;

  • 15. S. Podzimek Truths and myths about the determination of molar mass distribution of synthetic and natural polymers by size exclusion chromatography J. Appl. Polymer Sci. 131 (2014);

  • 16. S. Podzimek Importance of multi-angle light scattering in polyolefin characterization Macromol. Symp. 330 (2013) 81–91;

  • 17. B. H. Zimm and W. H. Stockmayer The dimensions of chain molecules containing branches and rings J. Chem. Phys. 17 (1949) 1301–1314;

  • 18. H. B. Zimm and W. R. Kilb Dynamics of branched polymer molecules in dilute solution J. Polymer Sci. 37 (1959) 19–42;

  • 19. J. F. Douglas J. Roovers and K. F. Freed Characterization of branching architecture through “universal” ratios of polymer solution properties Macromolecules 23 (1990) 4168–4180;

  • 20. S. Podzimek T. Vlcek and C. Johann Characterization of branched polymers by size exclusion chromatography coupled with multiangle light scattering detector. I. Size exclusion chromatography elution behavior of branched polymers J. Appl. Polymer Sci. 81 (2001) 1588–1594;

  • 21. D. S. Jones Y. Tian O. Abu-Diak and G. P. Andrews Pharmaceutical applications of dynamic mechanical thermal analysis Adv. Drug Deliv. Rev. 64 (2012) 440–448;

  • 22. Y. Shi X. Cao S. Luo X. Wang R. W. Graff D. Hu R. Guo and H. Gao Investigate the glass transition temperature of hyperbranched copolymers with segmented monomer sequence Macromolecules 49 (2016) 4416–4422;

  • 23. Y. Huang and W. G. Dai Fundamental aspects of solid dispersion technology for poorly soluble drugs Acta Pharm. Sin. B 4 (2014) 18–25;

  • 24. E. Snejdrova and M. Dittrich Pharmaceutically Used Plasticizers in Recent Advances in Plasticizers (Ed. M. Luqman) IntechOpen Rijeka 2012 pp. 69–90.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.405
5-year IMPACT FACTOR: 1.701

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.314
Source Normalized Impact per Paper (SNIP) 2018: 0.637

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 262 262 40
PDF Downloads 275 275 56