Branched PLGA derivatives with tailored drug delivery properties


Despite several shortcomings such as extreme hydrophobicity, low drug capacity, characteristic triphasic drug release pattern with a high burst effect, poly(lactic-co-glycolic acid derivatives are widely used in drug delivery. Most frequent attempts to improve their properties are blending with other polymers or synthesis of block copolymers. We introduce a new class of branched poly(lactic-co-glycolic acid) derivatives as promising biodegradable carriers for prolonged or targeted drug release systems, employed as thin adhesive films, solid dispersions, in situ forming implants or nanoparticles. A series of poly(lactic-co-glycolic acid) derivatives with lower molar mass and star or comb architecture were synthesized by a simple, catalyst free, direct melt polycondensation method not requiring purification of the obtained sterile product by precipitation. Branching monomers used were mannitol, pentaerythritol, dipentaerythritol, tripentaerythritol and polyacrylic acid. The products were characterized by molar mass averages, average branching ratio, rheological and thermal properties.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. P. Gentile, V. Chiono, I. Carmagnola and P. V. Hatton, An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering, Int. J. Mol. Sci. 15 (2014) 3640–3659;

  • 2. D. J. Hines and D. L. Kaplan, Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights, Crit. Rev. Ther. Drug Carrier Syst. 30 (2013) 257–276;

  • 3. H. K. Makadia and S. J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier, Polymers 3 (2011) 1377–1397;

  • 4. E. Swider, O. Koshkina, J. Tel, L. J. Cruz, I. J. M. de Vries and M. Srinivas, Customizing poly(lacticco-glycolic acid) particles for biomedical applications, Acta Biomater. 73 (2018) 38–51;

  • 5. F. Danhier, E. Ansorena, J. M. Silva, R. Coco, A. Le Breton and V. Préat, PLGA-based nanoparticles: an overview of biomedical applications, J. Control. Release 161 (2012) 505–522;

  • 6. B. S. Nagoba, N. M. Suryawanshi, B. Wadher and S. Selkar, Acidic environment and wound healing: a review, Wounds 27 (2015) 5–11.

  • 7. L. A. Dailey and T. Kissel, New poly(lactic-co-glycolic acid) derivatives: Modular polymers with tailored properties, Drug Discov. Today Technol. 2 (2005) 7–13;

  • 8. E. Snejdrova, M. Drastik, M. Dittrich, P. Kastner and J. Nguyenova, Mucoadhesive plasticized system of branched poly(lactic-co-glycolic acid) with aciclovir, Drug Dev. Ind. Pharm. 42 (2016) 1653–1659;

  • 9. E. Snejdrova, M. Drastik and M. Dittrich, Plasticized branched aliphatic oligoesters as potential mucoadhesive drug carriers, Int. J. Pharm. 458 (2013) 282–286;

  • 10. M. Ajioka, H. Suizu, C. Higuchi and T. Kashima, Aliphatic polyesters and their copolymers synthesized through direct condensation polymerization, Polym. Degrad. Stab. 59 (1998) 137–143;

  • 11. C. K. Williams, Synthesis of functionalized biodegradable polyesters, Chem. Soc. Rev. 36 (2007) 1573–1580;

  • 12. A. Alla, K. Hakkou, F. Zamora, A. Martínez de Ilarduya, J. A. Galbis and S. Muñoz-Guerra, Poly(butylene terephthalate) Copolyesters Derived from l-Arabinitol and Xylitol, Macromolecules 39 (2006) 1410–1416;

  • 13. M. G. García-Martín, R. R. Pérez, E. B. Hernández and J. A. Galbis, Linear polyesters of the poly[alkylene (and co-arylene) dicarboxylate] type derived from carbohydrates, Macromolecules 39 (2006) 7941–7949;

  • 14. J. Hu, W. Gao, A. Kulshrestha and R. A. Gross, “Sweet polyesters”: lipase-catalyzed condensation-polymerizations of alditols, Macromolecules 39 (2006) 6789–6792;

  • 15. S. Podzimek, Truths and myths about the determination of molar mass distribution of synthetic and natural polymers by size exclusion chromatography, J. Appl. Polymer Sci. 131 (2014);

  • 16. S. Podzimek, Importance of multi-angle light scattering in polyolefin characterization, Macromol. Symp. 330 (2013) 81–91;

  • 17. B. H. Zimm and W. H. Stockmayer, The dimensions of chain molecules containing branches and rings, J. Chem. Phys. 17 (1949) 1301–1314;

  • 18. H. B. Zimm and W. R. Kilb, Dynamics of branched polymer molecules in dilute solution, J. Polymer Sci. 37 (1959) 19–42;

  • 19. J. F. Douglas, J. Roovers and K. F. Freed, Characterization of branching architecture through “universal” ratios of polymer solution properties, Macromolecules 23 (1990) 4168–4180;

  • 20. S. Podzimek, T. Vlcek and C. Johann, Characterization of branched polymers by size exclusion chromatography coupled with multiangle light scattering detector. I. Size exclusion chromatography elution behavior of branched polymers, J. Appl. Polymer Sci. 81 (2001) 1588–1594;

  • 21. D. S. Jones, Y. Tian, O. Abu-Diak and G. P. Andrews, Pharmaceutical applications of dynamic mechanical thermal analysis, Adv. Drug Deliv. Rev. 64 (2012) 440–448;

  • 22. Y. Shi, X. Cao, S. Luo, X. Wang, R. W. Graff, D. Hu, R. Guo and H. Gao, Investigate the glass transition temperature of hyperbranched copolymers with segmented monomer sequence, Macromolecules 49 (2016) 4416–4422;

  • 23. Y. Huang and W. G. Dai, Fundamental aspects of solid dispersion technology for poorly soluble drugs, Acta Pharm. Sin. B 4 (2014) 18–25;

  • 24. E. Snejdrova and M. Dittrich, Pharmaceutically Used Plasticizers, in Recent Advances in Plasticizers (Ed. M. Luqman), IntechOpen, Rijeka 2012, pp. 69–90.


Journal + Issues