Cite

1. P. Gentile, V. Chiono, I. Carmagnola and P. V. Hatton, An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering, Int. J. Mol. Sci. 15 (2014) 3640–3659; https://doi.org/10.3390/ijms15033640 Search in Google Scholar

2. D. J. Hines and D. L. Kaplan, Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights, Crit. Rev. Ther. Drug Carrier Syst. 30 (2013) 257–276; https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2013006475 Search in Google Scholar

3. H. K. Makadia and S. J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier, Polymers 3 (2011) 1377–1397; https://doi.org/10.3390/polym3031377 Search in Google Scholar

4. E. Swider, O. Koshkina, J. Tel, L. J. Cruz, I. J. M. de Vries and M. Srinivas, Customizing poly(lacticco-glycolic acid) particles for biomedical applications, Acta Biomater. 73 (2018) 38–51; https://doi.org/10.1016/j.actbio.2018.04.006 Search in Google Scholar

5. F. Danhier, E. Ansorena, J. M. Silva, R. Coco, A. Le Breton and V. Préat, PLGA-based nanoparticles: an overview of biomedical applications, J. Control. Release 161 (2012) 505–522; https://doi.org/10.1016/j.jconrel.2012.01.043 Search in Google Scholar

6. B. S. Nagoba, N. M. Suryawanshi, B. Wadher and S. Selkar, Acidic environment and wound healing: a review, Wounds 27 (2015) 5–11. Search in Google Scholar

7. L. A. Dailey and T. Kissel, New poly(lactic-co-glycolic acid) derivatives: Modular polymers with tailored properties, Drug Discov. Today Technol. 2 (2005) 7–13; https://doi.org/10.1016/j.ddtec.2005.05.017 Search in Google Scholar

8. E. Snejdrova, M. Drastik, M. Dittrich, P. Kastner and J. Nguyenova, Mucoadhesive plasticized system of branched poly(lactic-co-glycolic acid) with aciclovir, Drug Dev. Ind. Pharm. 42 (2016) 1653–1659; https://doi.org/10.3109/03639045.2016.1160109 Search in Google Scholar

9. E. Snejdrova, M. Drastik and M. Dittrich, Plasticized branched aliphatic oligoesters as potential mucoadhesive drug carriers, Int. J. Pharm. 458 (2013) 282–286; https://doi.org/10.1016/j.ijpharm.2013.10.030 Search in Google Scholar

10. M. Ajioka, H. Suizu, C. Higuchi and T. Kashima, Aliphatic polyesters and their copolymers synthesized through direct condensation polymerization, Polym. Degrad. Stab. 59 (1998) 137–143; https://doi.org/10.1016/S0141-3910(97)00165-1 Search in Google Scholar

11. C. K. Williams, Synthesis of functionalized biodegradable polyesters, Chem. Soc. Rev. 36 (2007) 1573–1580; https://doi.org/10.1039/b614342n Search in Google Scholar

12. A. Alla, K. Hakkou, F. Zamora, A. Martínez de Ilarduya, J. A. Galbis and S. Muñoz-Guerra, Poly(butylene terephthalate) Copolyesters Derived from l-Arabinitol and Xylitol, Macromolecules 39 (2006) 1410–1416; https://doi.org/10.1021/ma052398v Search in Google Scholar

13. M. G. García-Martín, R. R. Pérez, E. B. Hernández and J. A. Galbis, Linear polyesters of the poly[alkylene (and co-arylene) dicarboxylate] type derived from carbohydrates, Macromolecules 39 (2006) 7941–7949; https://doi.org/10.1021/ma061325o Search in Google Scholar

14. J. Hu, W. Gao, A. Kulshrestha and R. A. Gross, “Sweet polyesters”: lipase-catalyzed condensation-polymerizations of alditols, Macromolecules 39 (2006) 6789–6792; https://doi.org/10.1021/ma0612834 Search in Google Scholar

15. S. Podzimek, Truths and myths about the determination of molar mass distribution of synthetic and natural polymers by size exclusion chromatography, J. Appl. Polymer Sci. 131 (2014); http://doi.org/10.1002/app.40111 Search in Google Scholar

16. S. Podzimek, Importance of multi-angle light scattering in polyolefin characterization, Macromol. Symp. 330 (2013) 81–91; https://doi.org/10.1002/masy.201300014 Search in Google Scholar

17. B. H. Zimm and W. H. Stockmayer, The dimensions of chain molecules containing branches and rings, J. Chem. Phys. 17 (1949) 1301–1314; https://doi.org/10.1063/1.1747157 Search in Google Scholar

18. H. B. Zimm and W. R. Kilb, Dynamics of branched polymer molecules in dilute solution, J. Polymer Sci. 37 (1959) 19–42; https://doi.org/10.1002/pol.1959.1203713102 Search in Google Scholar

19. J. F. Douglas, J. Roovers and K. F. Freed, Characterization of branching architecture through “universal” ratios of polymer solution properties, Macromolecules 23 (1990) 4168–4180; https://doi.org/10.1021/ma00220a022 Search in Google Scholar

20. S. Podzimek, T. Vlcek and C. Johann, Characterization of branched polymers by size exclusion chromatography coupled with multiangle light scattering detector. I. Size exclusion chromatography elution behavior of branched polymers, J. Appl. Polymer Sci. 81 (2001) 1588–1594; https://doi.org/10.1002/app.1589 Search in Google Scholar

21. D. S. Jones, Y. Tian, O. Abu-Diak and G. P. Andrews, Pharmaceutical applications of dynamic mechanical thermal analysis, Adv. Drug Deliv. Rev. 64 (2012) 440–448; https://doi.org/10.1016/j.addr.2011.12.002 Search in Google Scholar

22. Y. Shi, X. Cao, S. Luo, X. Wang, R. W. Graff, D. Hu, R. Guo and H. Gao, Investigate the glass transition temperature of hyperbranched copolymers with segmented monomer sequence, Macromolecules 49 (2016) 4416–4422; https://doi.org/10.1021/acs.macromol.6b01144 Search in Google Scholar

23. Y. Huang and W. G. Dai, Fundamental aspects of solid dispersion technology for poorly soluble drugs, Acta Pharm. Sin. B 4 (2014) 18–25; https://doi.org/10.1016/j.apsb.2013.11.001 Search in Google Scholar

24. E. Snejdrova and M. Dittrich, Pharmaceutically Used Plasticizers, in Recent Advances in Plasticizers (Ed. M. Luqman), IntechOpen, Rijeka 2012, pp. 69–90. Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other