Open Access

Toll-Like Receptors and their Contribution to Innate Immunity: Focus on TLR4 Activation by Lipopolysaccharide


Cite

Mechanisms of innate immunity are triggered as a result of recognition of evolutionarily conserved structures of microorganisms, named pathogen-associated molecular patterns. Their recognition is mediated by specialized receptors which initiate signalling cascades leading to expression of pro-inflammatory mediators and regulation of acquired immunity. Among several classes of such receptors, Toll-like receptors (TLRs) are extensively studied as they can sense an array of microbial cell wall and membrane components as well as single- and double-stranded RNA and DNA motifs typical for microorganisms. Each TLR consists of a ligand-binding domain containing leucine-rich repeats, a single transmembrane domain and a signalling TIR domain. After ligand binding, TLRs dimerize which facilitates the interaction of their TIR domains with adaptor proteins triggering signalling cascades. TLRs engage four common adaptor proteins, about ten signalling kinases, and a few transcription factors including NFκB, IRF and AP-1. In this review, special attention is paid to TLR4 activated by lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, since an exaggerated response to LPS may lead to potentially deadly septic shock. In recent years considerable progress has been made in the understanding of how the cooperation of several proteins, including CD14, TLR4/MD-2 complex and scavenger receptors, modulates the cell response to LPS. These studies have also revealed a dichotomy of signalling pathways triggered by TLR4 which depends on the participation of MyD88 and TRIF adaptor proteins and leads to the expression of genes encoding pro-inflammatory cytokines and type I interferons, respectively. The key event in the TRIF-dependent pathway is the internalization of activated TLR4.

eISSN:
2080-2218
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry