Open Access

Toll-Like Receptors and their Contribution to Innate Immunity: Focus on TLR4 Activation by Lipopolysaccharide


Cite

[1] Anderson KV, Nüsslein-Volhard C. Information for the dorsal-ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 1984; 311: 223-227.10.1038/311223a06434989Search in Google Scholar

[2] Baranova IN, Kurlander R, Bocharov AV, Vishnyakova TG, Chen Z, Remaley AT, Csako G, Patt erson AP, Eggerman TL. Role of human CD36 in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signalling. J Immunol 2008; 181: 7147-7156.10.4049/jimmunol.181.10.7147384222318981136Search in Google Scholar

[3] Bianchi Me. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007; 81: 1-5.10.1189/jlb.030616417032697Search in Google Scholar

[4] Bortoluci KR, Medzhitov R. Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell Mol Life Sci 2010; 67: 1643-1651.10.1007/s00018-010-0335-520229126Search in Google Scholar

[5] Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signalling. Nat Immunol 2006; 7: 1074-1081.10.1038/ni138216964262Search in Google Scholar

[6] Chiang CY, Veckman V, Limmer K, Dav id M. Phospholipase Cγ-2 and intracellular calcium are required for lipopolysaccharide-induced Toll-like receptor 4 (TLR4) endocytosis and interferon regulatory factor 3 (IRF3) activation. J Biol Chem 2012; 287: 3704-3709.10.1074/jbc.C111.328559328173322158869Search in Google Scholar

[7] Choe J, Kelker MS, Wilson IA. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science 2005; 309: 581-585.10.1126/science.111525315961631Search in Google Scholar

[8] Duerr CU, Zenk SF, Chassin C, Pott J, Gutle D, Hensel M, Hornef MW. O-antigen delays lipopolysaccharide recognition and impairs antibacterial host defense in murine intestinal epithelial cells. PLoS Pathog 2009; 5: e1000567.10.1371/journal.ppat.1000567272992819730692Search in Google Scholar

[9] Dunzendorfer S, Lee HK, Soldau K, Tobias PS. TLR4 is the signalling but not the lipopolysaccharide uptake receptor. J Immunol 2004; 173: 1166-1170.10.4049/jimmunol.173.2.116615240706Search in Google Scholar

[10] Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol 2010; 87: 989-999.10.1189/jlb.120977520179153Search in Google Scholar

[11] Erridge C, Bennett-Guerrero E, Poxton IR. Structure and function of lipopolysaccharides. Microbes Infect 2002; 4: 837-851.10.1016/S1286-4579(02)01604-0Search in Google Scholar

[12] Fenton MJ, Golenbock DT. LPS-binding proteins and receptors. J Leukoc Biol 1998; 64: 25-32.10.1002/jlb.64.1.259665271Search in Google Scholar

[13] Fitzgerald KA, Mcwhirter SM, Faia Kl, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniat is T. IKKε and TBK1 are essential components of the IRF3 signalling pathway. Nat Immunol 2003; 4: 491-496.10.1038/ni92112692549Search in Google Scholar

[14] Gay NJ, Gangloff M. Structure and function of Toll receptors and their ligands. Annu Rev Biochem 2007; 76: 141-165.10.1146/annurev.biochem.76.060305.15131817362201Search in Google Scholar

[15] Gay NJ, Gangloff M, O’neill LA. What the Myddosome structure tells us about the initiation of innate immunity. Trends Immunol 2011; 32: 104-109.10.1016/j.it.2010.12.00521269878Search in Google Scholar

[16] Grygorowicz MA, Kozłowska E. Involvement of TLR receptors recognising pathogens’ molecular patterns in modulation of activity manifested by regulatory lymphocytes T CD4+CD25+FoxP3+(in Polish). Post. Mikrobiol 2011; 50: 141-154.Search in Google Scholar

[17] Hasan UA, Dollet S, Vlach J. Differential induction of gene promoter constructs by constitutively active human TLRs. Biochem Biophys Res Commun 2004; 321: 124-131.10.1016/j.bbrc.2004.06.13415358224Search in Google Scholar

[18] Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Guiet C, Briere F, Vlach J, Lebecque S, Trinchieri G, Bat es EE. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 2005; 174: 2942-2950.10.4049/jimmunol.174.5.294215728506Search in Google Scholar

[19] Haworth R, Platt N, Keshav S, Hughes D, Darley E, Suzuki H, Kurihara Y, Kodama T, Gordon S. The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J Exp Med 1997; 186: 1431-1439.10.1084/jem.186.9.143121991239348300Search in Google Scholar

[20] Horng T, Barton GM, Medzhitov IR. TIRAP: an adapter molecule in the Toll signalling pathway. Nat Immunol 2001; 2: 835-841.10.1038/ni0901-83511526399Search in Google Scholar

[21] Huber M, Kalis C, Keck S, Jiang Z, Georgel P, Du X, Shamel L, Sovat h S, Mudd S, Beutler B, Galanos C, Freudenberg MA. R-form LPS, the master key to the activation of TLR4/MD-2-positive cells. Eur J Immunol 2006; 36: 701-711.10.1002/eji.20053559316506285Search in Google Scholar

[22] Husebye H, Halaas O, Stenmark H, Tunheim G, Sandanger O, Bogen B, Brech A, Latz E, Espevik T. Endocytic pathways regulate Toll-like receptor 4 signalling and link innate and adaptive immunity. EMBO J 2006; 25: 683-962.10.1038/sj.emboj.7600991138356916467847Search in Google Scholar

[23] Husebye H, Aune Mh, Stenvik J, Samsta d E, Skjeldal F, Halaas O, Nilsen NJ, Stenmark H, Latz E, Lien E, Mollnes TE, Bakke O, Espevik T. The Rab11a GTPase controls Toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity 2010; 33: 583-596.10.1016/j.immuni.2010.09.01020933442Search in Google Scholar

[24] Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010; 327: 291-295.10.1126/science.1183021364587520075244Search in Google Scholar

[25] Jiang Z, Georgel P, Du X, Shamel L, Sovat h S, Mudd S, Huber M, Kalis S, Keck S, Galanos C, Freudenberg M, Beutler B. CD14 is required for MyD88-independent LPS signalling. Nat Immunol 2005; 6: 565-570.10.1038/ni120715895089Search in Google Scholar

[26] Jin Ms, Lee Jo. Structures of the toll-like receptor family and its ligand complexes. Immunity 2008; 29: 182-191.10.1016/j.immuni.2008.07.00718701082Search in Google Scholar

[27] Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO. Crystal structure of the TLR1- TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007; 130: 1071-1082.10.1016/j.cell.2007.09.00817889651Search in Google Scholar

[28] Józefowski S. The role of the class A scavenger receptors, SR-A and MARCO, in the immune system. Part 1. The structure of receptors, their ligand binding repertoires and ability to initiate intracellular signalling. Postepy Hig Med Dosw (Online) 2012; 6: 104-119.Search in Google Scholar

[29] Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signalling. Cell 2006; 125: 943-955.10.1016/j.cell.2006.03.04716751103Search in Google Scholar

[30] Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat Immunol 2008; 9: 361-368. 10.1038/ni1569411282518297073Search in Google Scholar

[31] Kang JY, Lee JO. Structural biology of the Toll-like receptor family. Annu Rev Biochem 2011; 80: 917-941.10.1146/annurev-biochem-052909-14150721548780Search in Google Scholar

[32] Kang JY, Nan X, Jin MS, Youn SJ, Ryu JH, Mah S, Han SH, Lee H, Paik SG, Lee JO. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 2009; 31: 873-884.10.1016/j.immuni.2009.09.01819931471Search in Google Scholar

[33] Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signalling. Ann N Y Acad Sci 2008; 1143: 1-20.10.1196/annals.1443.020Search in Google Scholar

[34] Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11: 373-384.10.1038/ni.1863Search in Google Scholar

[35] Kennedy MN, Mullen GE, Leifer CA, Lee C, Mazzoni A, Dileepa n KN, Segal DM. A complex of soluble MD-2 and lipopolysaccharide serves as an activating ligand for Toll-like receptor 4. J Biol Chem 2004; 279: 34698-34704.10.1074/jbc.M405444200Search in Google Scholar

[36] Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Mat sushima N, Lee H, Yoo OJ, Lee JO. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 2007; 130: 906-917.10.1016/j.cell.2007.08.002Search in Google Scholar

[37] Kim JI, Lee CJ, Jin MS, Lee CH, Paik SG, Lee H, Lee JO. Crystal structure of CD14 and its implications for lipopolysaccharide signalling. J Biol Chem 2005; 280: 11347-11351.10.1074/jbc.M414607200Search in Google Scholar

[38] Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 2001; 11: 725-732.10.1016/S0959-440X(01)00266-4Search in Google Scholar

[39] Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol 2011; 30: 16-34.10.3109/08830185.2010.529976Search in Google Scholar

[40] Leelahava nichkul A, Bocharov AV, Kurlander R, Baranova IN, Vishnyakova TG, Souza AC, Hu X, Doi K, Vaisman B, Amar M, Sviridov D, Chen Z, Remaley AT, Csako G, Patt erson AP, Yuen PS, Sta r RA, Eggerman TL. Class B scavenger receptor types I and II and CD36 targeting improves sepsis survival and acute outcomes in mice. J Immunol 2012; 188: 2749-2758.10.4049/jimmunol.1003445Search in Google Scholar

[41] Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86: 973-983.10.1016/S0092-8674(00)80172-5Search in Google Scholar

[42] Leulier F, Lemaitre B. Toll-like receptors - taking an evolutionary approach. Nat Rev Genet 2008; 9: 165-178.10.1038/nrg230318227810Search in Google Scholar

[43] Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 2010; 465: 885-890.10.1038/nature09121288869320485341Search in Google Scholar

[44] Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science 2010; 327: 46-50.10.1126/science.117462120044567Search in Google Scholar

[45] Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM, Dav ies DR. Structural basis of toll-like receptor 3 signalling with double-stranded RNA. Science 2008; 320: 379-381.10.1126/science.1155406276103018420935Search in Google Scholar

[46] Macleod H, WETZLER LM. T cell activation by TLRs: a role for TLRs in the adaptive immune response. Sci STKE 2007; 2007(402): e48.10.1126/stke.4022007pe4817785715Search in Google Scholar

[47] Mat sushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki K. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics 2007; 8: 124.10.1186/1471-2164-8-124189918117517123Search in Google Scholar

[48] Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394-397.10.1038/411319237759Search in Google Scholar

[49] Meng J, Parroche P, Golenbock DT, Mck night CJ. The differential impact of disulfide bonds and N-linked glycosylation on the stability and function of CD14. J Biol Chem 2008; 283: 3376-33784.10.1074/jbc.M70764020018057002Search in Google Scholar

[50] Mishra BB, Gundra UM, Teale JM. Expression and distribution of Toll-like receptors 11-13 in the brain during murine neurocysticercosis. J Neuroinflammation 2008; 5: 53. 10.1186/1742-2094-5-53263147719077284Search in Google Scholar

[51] Mukhopa dhyay S,Varin A, Chen Y, Liu B, Tryggva son K, Gordon S. SRA/MARCO-mediated ligand delivery enhances intracellular TLR and NLR function, but ligand scavenging from cell surface limits TLR4 response to pathogens. Blood 2011; 117: 1319-1328.10.1182/blood-2010-03-27673321098741Search in Google Scholar

[52] Nagai Y Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kita mura T, Kosugi A, Kimoto M, Miyake K. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 2002; 3: 667-672.10.1038/ni80912055629Search in Google Scholar

[53] Nunez Miguel R, Wong J, Westoll JF, Brooks HJ, O’neill LA, Gay NJ, Bryant CE, Monie TP. A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS One 2007; 2: e788.10.1371/journal.pone.0000788194508317726518Search in Google Scholar

[54] Nyman T, Stenmark P, Flodin S, Johansson I, Hammarstrom M, Nordlund P. The crystal structure of the human Toll-like receptor 10 cytoplasmic domain reveals a putative signalling dimer. J Biol Chem 2008; 283: 11861-11865.10.1074/jbc.C80000120018332149Search in Google Scholar

[55] Ohto U, Fukase K, Miyake K, Sat ow Y. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 2007; 316: 1632-1633.10.1126/science.113911117569869Search in Google Scholar

[56] Panter G, Jerala R. The ectodomain of the Toll-like receptor 4 prevents constitutive receptor activation. J Biol Chem 2011; 286: 23334-13344.10.1074/jbc.M110.205419312309821543336Search in Google Scholar

[57] Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009; 458: 1191-1195.10.1038/nature0783019252480Search in Google Scholar

[58] Pifer R, Benson A, Sturge CR, Yarovinsky F. UNC93B1 is essent ial for TLR11 act ivat ion and IL-12-dependent host resistance to Toxoplasma gondii. J Biol Chem 2011; 286: 3307-3314.10.1074/jbc.M110.171025303033621097503Search in Google Scholar

[59] Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi Castag noli P, Layton B, Beutler B. Defective LPS signalling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282: 2085-2088.10.1126/science.282.5396.20859851930Search in Google Scholar

[60] Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002; 71: 635-700.10.1146/annurev.biochem.71.110601.135414256985212045108Search in Google Scholar

[61] Resman N, Vasl J, Oblak A, Pristovsek P, Gioannini TL, Weiss JP, Jerala R. Essential roles of hydrophobic residues in both MD-2 and toll-like receptor 4 in activation by endotoxin. J Biol Chem 2009; 284: 15052-15060.10.1074/jbc.M901429200268568719321453Search in Google Scholar

[62] Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, Di Padova F, Schreier M, Brade H. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 1994; 8: 217-225.10.1096/fasebj.8.2.81194928119492Search in Google Scholar

[63] Rittig MG, Kaufmann A, Robins A, Shaw B, Sprenger H, Gemsa D, Foulongne V, Rouot B, Dornand J. Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. J Leukoc Biol 2003; 74: 1045-1055.10.1189/jlb.010301512960272Search in Google Scholar

[64] Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M. Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 2007; 9: 1081-1088.10.1038/ncb162917704767Search in Google Scholar

[65] Salomao R, Brunialti MK, Rapozo MM, Baggio-Zappia GL, Galanos C, Freudenberg M. Bacterial sensing, cell signalling, and modulation of the immune response during sepsis. Shock 2012; 38: 227-242.10.1097/SHK.0b013e318262c4b022777111Search in Google Scholar

[66] Sat oh T, Kat o H, Kumagai Y, Yoneyama M, Sat o S, Mat sushita K, Tsujimura T, Fujita T, Akira S, Takeuchi O. LGP2 is a positive regulator of RIG-I and MDA5-mediated antiviral responses. Proc Natl Acad Sci USA 2010. 107: 1512-517.10.1073/pnas.0912986107282440720080593Search in Google Scholar

[67] Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001; 2: 947-950.10.1038/ni71211547333Search in Google Scholar

[68] Shibata T, Motoi Y, Tanimura N, Yamakawa N, Akashi-Takamura S, Miyake K. Intracellular TLR4/ MD-2 in macrophages senses Gram-negative bacteria and induces a unique set of LPS-dependent genes. Int Immunol 2011; 23: 503-510. 10.1093/intimm/dxr04421712422Search in Google Scholar

[69] Silhav y TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010; 2: a000414.10.1101/cshperspect.a000414285717720452953Search in Google Scholar

[70] Sun J, Duffy KE, Ranjith-Kumar CT, Xiong J, Lamb RJ, Santos J, Masarapu H, Cunningham M, Holzenburg A, Sarisky RT, Mbow ML, Kao C. Structural and functional analyses of the human Toll- like receptor 3. Role of glycosylation. J Biol Chem 2006; 281: 11144-11151.10.1074/jbc.M51044220016533755Search in Google Scholar

[71] Triantaf ilou M, Morat h S, Mackie A, Hartung K, Triantaf ilou K. Lateral diffusion of Toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane. J Cell Sci 2004; 117: 4007-4014.10.1242/jcs.0127015286178Search in Google Scholar

[72] Triantaf ilou M, Lepper PM, Briault CD, Ahmed MA, Dmochowski JM, Schumann C, Triantaf ilou K. Chemokine receptor 4 (CXCR4) is part of the lipopolysaccharide “sensing apparatus”. Eur J Immunol 2008; 38: 192-203.10.1002/eji.20063682118081034Search in Google Scholar

[73] Triantaf ilou M, Lepper PM, Olden R, Dias IS, Triantaf ilou K. Location, location, location: Is membrane partitioning everything when it comes to innate immune activation? Mediators Inflamm 2011; 2011: 186093.10.1155/2011/186093313410521765613Search in Google Scholar

[74] Wang Y, Chen T, Han C, He D, Liu H, An H, Cai Z, Cao X. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signalling in macrophages by promoting lysosomal degradation of TLR4. Blood 2007; 110: 962-971.10.1182/blood-2007-01-06602717395780Search in Google Scholar

[75] Wang D, Lou J, Ouyang C, Chen W, Liu Y, Liu X, Cao X, Wang J, Lu L. Ras-related protein Rab10 facilitates TLR4 signalling by promoting replenishment of TLR4 onto the plasma membrane. Proc Natl Acad Sci USA 2010; 107: 13806-13811.10.1073/pnas.1009428107292228320643919Search in Google Scholar

[76] Wang Y, Yang Y, Liu X, Wang N, Cao H, Lu Y, Zhou H, Zheng J. Inhibition of clathrin/dynamin-dependent internalization interferes with LPS-mediated TRAM-TRIF-dependent signalling pathway. Cell Immunol 2012; 274: 121-129.10.1016/j.cellimm.2011.12.00722341560Search in Google Scholar

[77] Watt ers TM, Kenny EF, O’neill LA. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol 2007; 85: 411-419.10.1038/sj.icb.710009517667936Search in Google Scholar

[78] Weber AN, Morse MA, Gay NJ. Four N-linked glycosylation sites in humantoll-like receptor 2 cooperate to direct efficient biosynthesis and secretion. J Biol Chem 2004; 279: 34589-34594.10.1074/jbc.M40383020015173186Search in Google Scholar

[79] Weiss J. Bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide- binding protein (LBP): structure, function and regulation in host defence against Gram- negative bacteria. Biochem Soc Trans 2003; 31: 785-790.10.1042/bst031078512887306Search in Google Scholar

[80] Wong SW, Kwon MJ, Choi AM, Kim HP, Nakahira K, Hwang DH. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem 2009; 284: 27384-27392.10.1074/jbc.M109.044065278566719648648Search in Google Scholar

[81] Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains.Nature, 2000; 408: 111-115.10.1038/3504060011081518Search in Google Scholar

[82] Yamamoto M, Sat o S, Hemmi H, Uemat su S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signalling pathway. Nat Immunol 2003; 4: 144-1150. 10.1038/ni98614556004Search in Google Scholar

[83] Yamamoto M, Okamoto T, Takeda K, Sat o S, Sanjo H, Uemat su S, Saitoh T, Yamamoto N, Sakurai H, Ishii KJ, Yamaoka S, Kawai T, Mat suura Y, Takeuchi O, Akira S. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signalling. Nat Immunol 2006; 7: 962-970.10.1038/ni136716862162Search in Google Scholar

[84] Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J, Lu B, Chava n S, Rosas-Ballina M, Al-Abed Y, Akira S, Bierhaus A, Erladsson-Harris H, Abdersson U, Tracey KJ. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci USA 2010; 107: 11942-11947. 10.1073/pnas.1003893107290068920547845Search in Google Scholar

[85] Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, Granucci F, Kagan JC. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 2011; 147: 868-880.10.1016/j.cell.2011.09.051321721122078883Search in Google Scholar

[86] Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flav ell RA, Ghosh IS. A toll-like receptor that prevents infection by uropathogenic bacteria.Science 2004; 303: 1522-1526.10.1126/science.109435115001781Search in Google Scholar

[87] Zhu X, Owen JS, Wilson MD, Li H, Griffiths GL, Thomas MJ, Hiltbold EM, Fessler MB, Parks JS. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res 2010; 51: 3196-3206. 10.1194/jlr.M006486295256020650929Search in Google Scholar

eISSN:
2080-2218
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry