Otwarty dostęp

New thiopyridine complexes: design, electrochemical preparation and biological assessment


Zacytuj

1. Qadri, F., Svennerholm, A.M., Faruque, A.S.G. & Sack, R.B. (2005). Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev 18, 465–483.10.1128/CMR.18.3.465-483.2005119596716020685Search in Google Scholar

2. Dreyse, P.A., Isaacs, M.A., Iturriaga, P.E., Villagra, D.A., Aguirre, M.J., Kubiak, C.P., Glover, S.D. & Goeltz, J.C. (2010). Electrochemical preparation of conductive films of tetrapyridyl-porphyrins coordinated to four [Ru(5-NO2-phen)2Cl]+ groups. J. Electroanal. Chem. 648 98–104.10.1016/j.jelechem.2010.08.007Search in Google Scholar

3. Nevase, M.C., Pawar, R.D., Munjal, P.S., Dongare, A.E. & Satkar, R.S. (2018). review on various molecule activity, biological activity and chemical activity of pyridine. Europ. J. Pharmac. Med. Res., 5(11), 184–192.Search in Google Scholar

4. Jai, D., Nisha, B. & Suman, K. (2011). Synthesis and characterization of novel Organosilicon (IV) complexes with pyridine dicarboxylic acid and Mercapto pyridine carboxylic acid; Int. J. Res. Chem. Environ. 1, 50–56.Search in Google Scholar

5. Prachayasittikul, S., Treeratanapiboon, L., Ruchirawat, S. & Prachayasittikul, V. (2009). novel activities of 1-adamantylthiopyridines as antibacterials, antimalarials and anticancers. EXCLI Journal, 8, 121–129.Search in Google Scholar

6. Rodrigues, M.V.N., Corrêa, R.S., Vanzolini, K.L., Santos, D.S., Batista, A.A. & Cass, Q.B. (2015). Characterization and screening of tight binding inhibitors of xanthine oxidase: an on-flow assay. RSC Adv.,5, 37533–37538.10.1039/C5RA01741FSearch in Google Scholar

7. Schmid, W.F., Zorbas-Seifried, S., John, R.O., Arion, V.B., Jakupec, M.A., Roller, A., Galanski, M., Chiorescu, I., Zorbas, H. & Keppler, B.K. (2007). The first ruthenium-based paullones: syntheses, X-ray diffraction structures, and spectroscopic and antiproliferative properties in vitro. Inorg. Chem., 46, 3645–3656.10.1021/ic070098j17402728Search in Google Scholar

8. Lima, B.A.V., Corrêa, R.S., Graminha, A.E., Kuznetsov, A., Ellena, J., Pavan, F.R., Leite, C.Q.F. & Batista, A.A. (2016). “Anti-Mycobacterium tuberculosis and Cytotoxicity Activities of Ruthenium(II)/Bipyridine/Diphosphine/Pyrimidine-2-thiolate Complexes: The Role of the Non-Coordinated N-Atom” J. Braz. Chem. Soc., 27(1), 30–40,; http://dx.doi.org/10.5935/0103-5053.20150237.10.5935/0103-5053.20150237Search in Google Scholar

9. Kulkarni, A.D., Patil, S.A. & Badami, P.S. (2009). Electrochemical Properties of some Transition Metal Complexes: Synthesis, Characterization and In-vitro antimicrobial studies of Co (II), Ni(II), Cu(II), Mn(II) and Fe (III) Complexes. Int. J. Electrochem. Sci., 4, 717–729.10.1016/S1452-3981(23)15177-7Search in Google Scholar

10. Medici, S., Peana, M., Nurchi, V.M., Lachowicz, J.I., Crisponi, G. & Zoroddu, M.A. (2015). Noble metals in medicine: Latest advances. Coord. Chem. Rev., 284, 329–350.10.1016/j.ccr.2014.08.002Search in Google Scholar

11. Scheffler, H., You, Y. & Ott, I. (2010). Comparative studies on the cytotoxicity, cellular and nuclear uptake of a series of chloro gold(I) phosphine complexes. Polyhedron, 29, 66–69.10.1016/j.poly.2009.06.007Search in Google Scholar

12. Yeo, C.I., Ooi, K.K. & Tiekink, E.R.T. (2018). Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy? Molecules, 23, 1410; DOI: 10.3390/molecules23061410.10.3390/23061410Open DOISearch in Google Scholar

13. Jumaa, T., Chasib, M., Hamid, M.K. & Al-Haddad, R. (2014). Effect of the Electric Field on the Antibacterial Activity of Au Nanoparticles on Some Gram-positive and Gram-negative Bacteria. Nanosci. Nanotech. Res., 2(1),1–7; DOI: 10.12691/nnr-2-1-1.Search in Google Scholar

14. Amin, R.R. (2010). Chemical and Electrochemical Preparation for Co(II) Complexes of Some Novel Pyridine-2-(1H)-Thione Ring Fused Cycloalkane Derivatives; Phosphorus, Sulfur, and Silicon and the Related Elements 185(3), 537–543.10.1080/10426500902840861Search in Google Scholar

15. Amin, R.R. & Elgemeie, G.E.H. (2001). The direct electrochemical synthesis of Co(II), Ni(II), AND Cu(II) complexes of some pyridinethione derivatives; Synth. React. Inorg. Met.-Org. Chem., 31(3), 431–440.10.1081/SIM-100002230Search in Google Scholar

16. Reiss, A., Florea, S. & Rudorf, W.D. (2000). Transition metal complexes of heterocyclic ligands. Part III. Complexes of 6-aryl-3-cyano-4-trifluormethyl-pyridine-2(1H)-thione with Co(II), Ni(II), Cu(II) and Zn(II). Polish J. Chem. 74, 589–594.Search in Google Scholar

17. Rodinovskaya, L.A, Sharanin, Yu.A., Litvinov, V.P., Shestopalov, A.M., Promonenkov, V.K., Zolotarev, V.K., Mortikov, V.Yu., (1985). Nitrile cyclization reactions. 8. Synthesis and transformation of 6-aryl-4-trifluoromethyl-3-cyano-2 (1H)-pyridinethiones. Zh. Org. Khim., 21 2439.10.1002/chin.198611101Search in Google Scholar

18. Reeves, D.S. & White, L.O. (1983) Principles of methods of Assaying Antibiotics in Pharmaceutical Microbiology, 3rd ed., Blackwell Scientific Publication, p. 140–162.Search in Google Scholar

19. Winter, C.A., Risley, E.A., Nuss, G.W. (1962). Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiinflammatory Drugs. Proc. Soc. Exp. Biol. Med. 111, 544–547. https://doi.org/10.3181/00379727-111-27849.10.3181/00379727-111-2784914001233Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering