Otwarty dostęp

Batch removal of Pb (ΙΙ) ions from aqueous medium using gamma-Al2O3 nanoparticles/ethyl cellulose adsorbent fabricated via electrospinning method: An equilibrium isotherm and characterization study


Zacytuj

1. Singha, B. & Das, S.K. Removal of Pb(II) ions from aqueous solution and industrial effluent using natural biosorbents. Environ. Sci. Pollut. Res. 19 (2012) 2212–2226. DOI: 10.1007/s11356-011-0725-8.10.1007/s11356-011-0725-8Open DOISearch in Google Scholar

2. Yang, R., Aubrecht, K.B., Ma, H., Wang, R., Grubbs, R.B., Hsiao, B.S. & Chu, B. Thiol-modified cellulose nanofibrous composite membranes for chromium (VI) and lead (II) adsorption, Polym. (United Kingdom). 55 (2014) 1167–1176. DOI: 10.1016/j.polymer.2014.01.043.10.1016/j.polymer.2014.01.043Open DOISearch in Google Scholar

3. Pfadenhauer, L.M., Burns, J., Rohwer, A. & Rehfuess, E.A. Effectiveness of interventions to reduce exposure to lead through consumer products and drinking water: A systematic review. Environ. Res. 147 (2016) 525–536. DOI: 10.1016/j.envres.2016.03.004.10.1016/j.envres.2016.03.004Open DOISearch in Google Scholar

4. Klapiszewski, Ł. & Szatkowski, T. Removal of lead (II) ions by an adsorption process with the use of an advanced SiO2 / lignin biosorbent. Polish J. Chem. Technol. 19 (2017) 48–53. DOI: 10.1515/pjct-2017-0007.10.1515/pjct-2017-0007Open DOISearch in Google Scholar

5. Pitsari, S., Tsoufakis, E. & Loizidou, M. Enhanced lead adsorption by unbleached newspaper pulp modified with citric acid. Chem. Eng. J. 223 (2013) 18–30. DOI: 10.1016/j.cej.2013.02.105.10.1016/j.cej.2013.02.105Open DOISearch in Google Scholar

6. Bensacia, N., Fechete, I., Moulay, S., Hulea, O., Boos, A. & Garin, F., Kinetic and equilibrium studies of lead(II) adsorption from aqueous media by KIT-6 mesoporous silica functionalized with -COOH, Comptes Rendus Chim. 17 (2014) 869–880. DOI: 10.1016/j.crci.2014.03.007.10.1016/j.crci.2014.03.007Open DOISearch in Google Scholar

7. Fu, F. & Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage. 92 (2011) 407–418. DOI: 10.1016/j.jenvman.2010.11.011.10.1016/j.jenvman.2010.11.011Open DOISearch in Google Scholar

8. Carolin, C.F., Kumar, P.S., Saravanan, A., Joshiba, G.J. & Naushad, M., Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 5 (2017) 2782–2799. DOI: 10.1016/j.jece.2017.05.029.10.1016/j.jece.2017.05.029Search in Google Scholar

9. Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G. & Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotoxicol. Environ. Saf. 148 (2018) 702–712. DOI: 10.1016/j.ecoenv.2017.11.034.10.1016/j.ecoenv.2017.11.034Open DOISearch in Google Scholar

10. Peng, W., Li, H., Liu, Y. & Song, S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 230 (2017) 496–504. DOI: 10.1016/j.molliq.2017.01.064.10.1016/j.molliq.2017.01.064Search in Google Scholar

11. Bhattacharyya, K.G. & Sen Gupta, S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 140 (2008) 114–131. DOI: 10.1016/j.cis.2007.12.008.10.1016/j.cis.2007.12.008Open DOISearch in Google Scholar

12. Demirbas, A., Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 157 (2008) 220–229. DOI: 10.1016/j.jhazmat.2008.01.024.10.1016/j.jhazmat.2008.01.024Open DOISearch in Google Scholar

13. Babel, S. & Kurniawan, T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 97 (2003) 219–243. DOI: 10.1016/S0304-3894(02)00263-7.10.1016/S0304-3894(02)00263-7Open DOISearch in Google Scholar

14. Bhattacharyya, K.G. & Sen Gupta, S., Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 140 (2008) 114–131. DOI: 10.1016/j.cis.2007.12.008.10.1016/j.cis.2007.12.008Open DOISearch in Google Scholar

15. Shen, J., Li, Z., nan Wu, Y., Zhang, B. & Li, F., Dendrimer-based preparation of mesoporous alumina nanofibers by electrospinning and their application in dye adsorption. Chem. Eng. J. 264 (2015) 48–55. DOI: 10.1016/j.cej.2014.11.069.10.1016/j.cej.2014.11.069Open DOISearch in Google Scholar

16. Song, L., Huo, J., Wang, X., Yang, F., He, J., Li, C. Phosphate adsorption by a Cu(II)-loaded polyethersulfone--type metal affinity membrane with the presence of coexistent ions. Chem. Eng. J. 284 (2016) 182–193. DOI: 10.1016/j.cej.2015.08.146.10.1016/j.cej.2015.08.146Open DOISearch in Google Scholar

17. Lalia, B.S., Kochkodan, V., Hashaikeh, R., Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship, Desalination. 326 (2013) 77–95. DOI: 10.1016/j.desal.2013.06.016.10.1016/j.desal.2013.06.016Open DOISearch in Google Scholar

18. Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63 (2003) 2223–2253. DOI: 10.1016/S0266-3538(03)00178-7.10.1016/S0266-3538(03)00178-7Open DOISearch in Google Scholar

19. Ma, Z., Masaya, K. & Ramakrishna, S. Immobilization of Cibacron blue F3GA on electrospun polysulphone ultra-fine fiber surfaces towards developing an affinity membrane for albumin adsorption. J. Memb. Sci. 282 (2006) 237–244. DOI: 10.1016/j.memsci.2006.05.027.10.1016/j.memsci.2006.05.027Open DOISearch in Google Scholar

20. Wu, J., Wang, N., Zhao, Y. & Jiang, L. Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A. 1 (2013) 7290. DOI: 10.1039/c3ta10451f.10.1039/c3ta10451fOpen DOISearch in Google Scholar

21. Ahmad, B., Stoyanov, S., Pelan, E., Stride, E. & Edirisinghe, M. Electrospinning of ethyl cellulose fibres with glass and steel needle configurations. FOOD Res. Int. 54 (2013) 1761–1772. DOI: 10.1016/j.foodres.2013.09.021.10.1016/j.foodres.2013.09.021Open DOISearch in Google Scholar

22. Patil, S.S., Shedbalkar, U.U., Truskewycz, A., Chopade, B.A. & Ball, A.S. Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environ. Technol. Innov. 5 (2016) 10–21. DOI: 10.1016/j.eti.2015.11.001.10.1016/j.eti.2015.11.001Search in Google Scholar

23. Steenkamp, G.C., Keizer, K., Neomagus, H.W.J.P. & Krieg, H.M. Copper(II) removal from polluted water with alumina/chitosan composite membranes. J. Memb. Sci. 197 (2002) 147–156. DOI: 10.1016/S0376-7388(01)00608-1.10.1016/S0376-7388(01)00608-1Open DOISearch in Google Scholar

24. Han, R., Zou, W., Zhang, Z., Shi, J., Yang, J. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand. I. Characterization and kinetic study. J. Hazard. Mater. 137 (2006) 384–395. DOI: 10.1016/j.jhazmat.2006.02.021.10.1016/j.jhazmat.2006.02.021Open DOISearch in Google Scholar

25. Wang, S.G., Gong, W.X., Liu, X.W., Yao, Y.W., Gao, B.Y., Yue, Q.Y. Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep. Purif. Technol. 58 (2007) 17–23. DOI: 10.1016/j.seppur.2007.07.006.10.1016/j.seppur.2007.07.006Open DOISearch in Google Scholar

26. Rahmani, A., Mousavi, H.Z., Fazli, M. Effect of nano-structure alumina on adsorption of heavy metals, Desalination. 253 (2010) 94–100. DOI: 10.1016/j.desal.2009.11.027.10.1016/j.desal.2009.11.027Open DOISearch in Google Scholar

27. Medina, M., Tapia, J., Pacheco, S., Espinosa, M., Rodriguez, R. Adsorption of lead ions in aqueous solution using silica-alumina nanoparticles, J. Non. Cryst. Solids. 356 (2010) 383–387. DOI: 10.1016/j.jnoncrysol.2009.11.032.10.1016/j.jnoncrysol.2009.11.032Open DOISearch in Google Scholar

28. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. & Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 211–212 (2012) 317–331. DOI: 10.1016/j.jhazmat.2011.10.016.10.1016/j.jhazmat.2011.10.016Open DOISearch in Google Scholar

29. Contreras-Bustos, R., Espejel-Ayala, F., Cercado-Quezada, B., Jiménez-Becerril, J. & Jiménez-Reyes, M. Adsorption of Zn2+ from solutions on manganese oxide obtained via ozone precipitation reaction. Polish J. Chem. Technol. 18 (2016) 46–50. DOI: 10.1515/pjct-2016-0008.10.1515/pjct-2016-0008Open DOISearch in Google Scholar

30. Gholami, A., Moghadassi, A.R., Hosseini, S.M., Shabani, S. & Gholami, F. Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water. J. Ind. Eng. Chem. 20 (2014) 1517–1522. DOI: 10.1016/j.jiec.2013.07.041.10.1016/j.jiec.2013.07.041Open DOISearch in Google Scholar

31. Li, J., Shi, Y., Cai, Y., Mou, S., Jiang, G., Adsorption of di-ethyl-phthalate from aqueous solutions with surfactant--coated nano/microsized alumina. Chem. Eng. J. 140 (2008) 214–220. DOI: 10.1016/j.cej.2007.09.037.10.1016/j.cej.2007.09.037Open DOISearch in Google Scholar

32. Taylor, G. Electrically Driven Jets, Proc. R. Soc. London A. 313 (1969) 453–475. DOI: 10.1098/rspa.1969.0205.10.1098/rspa.1969.0205Open DOISearch in Google Scholar

33. Matthews, J.A., Wnek, G.E., Simpson, D.G., Bowlin, G.L. Electrospinning of collagen nanofibers, Biomacromolecules. 3 (2002) 232–238. DOI: 10.1021/bm015533u.10.1021/bm015533uOpen DOISearch in Google Scholar

34. Foo, K.Y. & Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156 (2010) 2–10. DOI: 10.1016/j.cej.2009.09.013.10.1016/j.cej.2009.09.013Open DOISearch in Google Scholar

35. Sadeghi Pouya, E., Abolghasemi, H., Esmaieli, M., Fatoorehchi, H., Hashemi, S.J. & Salehpour, A. Batch adsorptive removal of benzoic acid from aqueous solution onto modified natural vermiculite: Kinetic, isotherm and thermodynamic studies. J. Ind. Eng. Chem. 31 (2015) 199–215. DOI: 10.1016/j.jiec.2015.06.024.10.1016/j.jiec.2015.06.024Open DOISearch in Google Scholar

36. Alberti, G., Amendola, V., Pesavento, M. & Biesuz, R. Beyond the synthesis of novel solid phases: Review on modelling of sorption phenomena. Coord. Chem. Rev. 256 (2012) 28–45. DOI: 10.1016/j.ccr.2011.08.022.10.1016/j.ccr.2011.08.022Open DOISearch in Google Scholar

37. C.H. Giles, D. Smith, A. Huitson, A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 47 (1974) 755–765. DOI: 10.1016/0021-9797(74)90252-5.10.1016/0021-9797(74)90252-5Open DOISearch in Google Scholar

38. Hamdaoui, O. & Naffrechoux, E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard. Mater. 147 (2007) 381–394. DOI: 10.1016/j.jhazmat.2007.01.021.10.1016/j.jhazmat.2007.01.021Open DOISearch in Google Scholar

39. Sari, A. & Tuzen, M. Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 160 (2008) 349–355. DOI: 10.1016/j.jhazmat.2008.03.005.10.1016/j.jhazmat.2008.03.005Open DOISearch in Google Scholar

40. Choong, C.E., Ibrahim, S., Yoon, Y. & Jang, M., Removal of lead and bisphenol A using magnesium silicate impregnated palm-shell waste powdered activated carbon: Comparative studies on single and binary pollutant adsorption. Ecotoxicol. Environ. Saf. 148 (2018) 142–151. DOI: 10.1016/j.ecoenv.2017.10.025.10.1016/j.ecoenv.2017.10.025Open DOISearch in Google Scholar

41. Bediako, J.K., Reddy, D.H.K., Song, M.H., Wei, W., Lin, S. & Yun, Y.S., Preparation, characterization and lead adsorption study of tripolyphosphate-modified waste Lyocell fibers. J. Environ. Chem. Eng. 5 (2017) 412–421. DOI: 10.1016/j.jece.2016.12.022.10.1016/j.jece.2016.12.022Open DOISearch in Google Scholar

42. Georgescu, A.M., Nardou, F., Zichil, V. & Nistor, I.D. Adsorption of lead(II) ions from aqueous solutions onto Cr--pillared clays, Appl. Clay Sci. (2017) 0–1. DOI: 10.1016/j.clay.2017.10.031.10.1016/j.clay.2017.10.031Open DOISearch in Google Scholar

43. Tabesh, S., Davar, F. & Loghman-Estarki, M.R. Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions, Elsevier B.V., 2017. DOI: 10.1016/j.jallcom.2017.09.246.10.1016/j.jallcom.2017.09.246Open DOISearch in Google Scholar

44. Vijayalakshmi, K., Devi, B.M., Latha, S., Gomathi, T., Sudha, P.N., Venkatesan, J. & Anil, S. Batch adsorption and desorption studies on the removal of lead (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int. J. Biol. Macromol. 104 (2017) 1483–1494. DOI: 10.1016/j.ijbiomac.2017.04.120.10.1016/j.ijbiomac.2017.04.120Open DOISearch in Google Scholar

45. Zhang, Y., Cao, B., Zhao, L., Sun, L., Gao, Y., Li, J. & Yang, F. Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Appl. Surf. Sci. 427 (2018) 147–155. DOI: 10.1016/j.apsusc.2017.07.237.10.1016/j.apsusc.2017.07.237Open DOISearch in Google Scholar

46. Gomez-Gonzalez, R., Cerino-Córdova, F.J., Garcia-León, A.M., Soto-Regalado, E., Davila-Guzman, N.E. & Salazar-Rabago, J.J. Lead biosorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN. J. Taiwan Inst. Chem. Eng. 68 (2016) 201–210. DOI: 10.1016/j.jtice.2016.08.038.10.1016/j.jtice.2016.08.038Open DOISearch in Google Scholar

47. Wang, C., Fan, X., Wang, P., Hou, J., Ao, Y. & Miao, L. Adsorption behavior of lead on aquatic sediments contaminated with cerium dioxide nanoparticles. Environ. Pollut. 219 (2016) 416–424. DOI: 10.1016/j.envpol.2016.05.025.10.1016/j.envpol.2016.05.025Open DOISearch in Google Scholar

48. Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 54 (1982) 2201–2218. DOI: 10.1351/pac198557040603.10.1351/pac198557040603Open DOISearch in Google Scholar

49. Liu, D., Que, G.H., Wang, Z.X., Yan, Z.F. In situ FT-IR study of CO and H2 adsorption on a Pt/Al2O3 catalyst, Catal. Today. 68 (2001) 155–160. DOI: 10.1016/S0920-5861(01)00306-6.10.1016/S0920-5861(01)00306-6Open DOISearch in Google Scholar

50. Alvar, E.N., Rezaei, M. & Alvar, H.N. Synthesis of mesoporous nanocrystalline MgAl2O4 spinel via surfactant assisted precipitation route. Powder Technol. 198 (2010) 275–278. DOI: 10.1016/j.powtec.2009.11.019.10.1016/j.powtec.2009.11.019Open DOISearch in Google Scholar

51. Kao, L.H. & Hsu, T.C. Silica template synthesis of ordered mesoporous carbon thick films with 35-nm pore size from mesophase pitch solution. Mater. Lett. 62 (2008) 695–698. DOI: 10.1016/j.matlet.2007.06.034.10.1016/j.matlet.2007.06.034Open DOISearch in Google Scholar

52. Mosquera, M.J., d. los Santos, D.M., Valdez-Castro, L. & Esquivias, L. New route for producing crack-free xerogels: Obtaining uniform pore size. J. Non. Cryst. Solids. 354 (2008) 645–650. DOI: 10.1016/j.jnoncrysol.2007.07.095.10.1016/j.jnoncrysol.2007.07.095Open DOISearch in Google Scholar

53. Wang, S., Lu, Z., Wang, D., Li, C., Chen, C. & Yin, Y. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 21 (2011) 6365. DOI: 10.1039/c0jm04398b.10.1039/c0jm04398bOpen DOISearch in Google Scholar

54. Gupta, S., Ramamurthy, P.C. & Madras, G. Synthesis and characterization of flexible epoxy nanocomposites reinforced with amine functionalized alumina nanoparticles: a potential encapsulant for organic devices. Polym. Chem. 2 (2011) 221. DOI: 10.1039/c0py00270d.10.1039/c0py00270dOpen DOISearch in Google Scholar

55. Tangsir, S., Hafshejani, L.D., Lähde, A., Maljanen, M., Hooshmand, A., Naseri, A.A., Moazed, H., Jokiniemi, J. & Bhatnagar, A., Water defluoridation using Al2O3 nanoparticles synthesized by flame spray pyrolysis (FSP) method. Chem. Eng. J. 288 (2016) 198–206. DOI: 10.1016/j.cej.2015.11.097.10.1016/j.cej.2015.11.097Open DOISearch in Google Scholar

56. Huang, L.Y., Yu, D.G., Branford-White, C. & Zhu, L.M. Sustained release of ethyl cellulose micro-particulate drug delivery systems prepared using electrospraying. J. Mater. Sci. 47 (2012) 1372–1377. DOI: 10.1007/s10853-011-5913-x.10.1007/s10853-011-5913-xOpen DOISearch in Google Scholar

57. Es-haghi, H., Mirabedini, S.M., Imani, M. & Farnood, R.R., Preparation and characterization of pre-silane modified ethyl cellulose-based microcapsules containing linseed oil, Colloids Surfaces A Physicochem. Eng. Asp. 447 (2014) 71–80. DOI: 10.1016/j.colsurfa.2014.01.021.10.1016/j.colsurfa.2014.01.021Open DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering