Zacytuj

1. Abbott, N.J., L. Ronnback, and E. Hansson, Astrocyteendothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006. 7(1): p. 41-53.10.1038/nrn182416371949Search in Google Scholar

2. Wilhelm, I., C. Fazakas, and I.A. Krizbai, In vitro models of the blood-brain barrier. Acta Neurobiol Exp (Wars), 2011. 71(1): p. 113-28.Search in Google Scholar

3. Bauer, H.C., et al., “You Shall Not Pass”-tight junctions of the blood brain barrier. Front Neurosci, 2014. 8: p. 392.10.3389/fnins.2014.00392Search in Google Scholar

4. Nagy, I., et al., Membrane Transporters in Physiological Barriers of Pharmacological Importance. Curr Pharm Des, 2016. 22(35): p. 5347-5372.10.2174/138161282266616072610174827464727Search in Google Scholar

5. Wilhelm, I., et al., Foe or friend? Janus-faces of the neurovascular unit in the formation of brain metastases. J Cereb Blood Flow Metab, 2018. 38(4): p. 563-587.10.1177/0271678X17732025588885528920514Search in Google Scholar

6. Krizbai, I.A., et al., Pharmaceutical Targeting of the Brain. Curr Pharm Des, 2016. 22(35): p. 5442-5462.10.2174/138161282266616072614420327464716Search in Google Scholar

7. Liebner, S., et al., Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol, 2018. 135(3): p. 311-336.10.1007/s00401-018-1815-1678163029411111Search in Google Scholar

8. Wang, Q.P., et al., A diffusion barrier between the area postrema and nucleus tractus solitarius. Neurochem Res, 2008. 33(10): p. 2035-43.1837319510.1007/s11064-008-9676-y18373195Search in Google Scholar

9. Morita, S., et al., Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res, 2016. 363(2): p. 497-511.10.1007/s00441-015-2207-726048259Search in Google Scholar

10. Winkler, E.A., et al., Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability. J Cereb Blood Flow Metab, 2012. 32(10): p. 1841-52.10.1038/jcbfm.2012.113346387822850407Search in Google Scholar

11. Winkler, E.A., R.D. Bell, and B.V. Zlokovic, Central nervous system pericytes in health and disease. Nat Neurosci, 2011. 14(11): p. 1398-1405.10.1038/nn.2946402062822030551Search in Google Scholar

12. Mathiisen, T.M., et al., The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia, 2010. 58(9): p. 1094-103.10.1002/glia.2099020468051Search in Google Scholar

13. Nyul-Toth, A., et al., Differences in the molecular structure of the blood-brain barrier in the cerebral cortex and white matter: an in silico, in vitro, and ex vivo study. Am J Physiol Heart Circ Physiol, 2016. 310(11): p. H1702-14.10.1152/ajpheart.00774.201527059078Search in Google Scholar

14. Attwell, D., et al., What is a pericyte? J Cereb Blood Flow Metab, 2016. 36(2): p. 451-5.10.1177/0271678X15610340475967926661200Search in Google Scholar

15. Lundgaard, I., et al., White matter astrocytes in health and disease. Neuroscience, 2014. 276: p. 161-73.10.1016/j.neuroscience.2013.10.050401699524231735Search in Google Scholar

16. Wilhelm, I. and I.A. Krizbai, In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm, 2014. 11(7): p. 1949-63.10.1021/mp500046f24641309Search in Google Scholar

17. 17. Eisen, M.B., et al., Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 1998. 95(25): p. 14863-8.10.1073/pnas.95.25.14863245419843981Search in Google Scholar

18. Uchida, Y., et al., Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem, 2011. 117(2): p. 333-45.10.1111/j.1471-4159.2011.07208.x21291474Search in Google Scholar

19. Wilhelm, I., et al., Heterogeneity of the blood-brain barrier. Tissue Barriers, 2016. 4(1): p. e1143544.10.1080/21688370.2016.1143544483647527141424Search in Google Scholar

20. Ransohoff, R.M., et al., Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics, 2015. 12(4): p. 896-909.10.1007/s13311-015-0385-3460418326306439Search in Google Scholar

21. Wilhelm, I., et al., Role of pattern recognition receptors of the neurovascular unit in inflamm-aging. Am J Physiol Heart Circ Physiol, 2017. 313(5): p. H1000-H1012.10.1152/ajpheart.00106.201728801521Search in Google Scholar

22. Hawrylycz, M.J., et al., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 2012. 489(7416): p. 391-399.10.1038/nature11405424302622996553Search in Google Scholar

23. Kasukawa, T., et al., Quantitative expression profile of distinct functional regions in the adult mouse brain. PLoS One, 2011. 6(8): p. e23228.10.1371/journal.pone.0023228315552821858037Search in Google Scholar

24. Zhang, Y., et al., An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci, 2014. 34(36): p. 11929-47.10.1523/JNEUROSCI.1860-14.2014415260225186741Search in Google Scholar

25. Vanlandewijck, M., et al., A molecular atlas of cell types and zonation in the brain vasculature. Nature, 2018. 554(7693): p. 475-480.10.1038/nature2573929443965Search in Google Scholar

eISSN:
2537-5059
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other, Medicine, Clinical Medicine, Pharmacy