Otwarty dostęp

Reduced Data Dualscale Entropy Analysis of HRV Signals for Improved Congestive Heart Failure Detection


Zacytuj

[1] Lahiri, M.K., Kannankeril, P.J., Goldberger, J.J. (2008). Assessment of autonomic function in cardiovascular disease. Journal of the American College of Cardiology, 51, 1725-1733.10.1016/j.jacc.2008.01.03818452777Search in Google Scholar

[2] Task Force of the European Society of Cardiology and North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurements, physiological interpretation, and clinical use. European Heart Journal, 17, 354-381.Search in Google Scholar

[3] Gao, J., Hu, J., Tung, W.W., Blasch, E. (2012). Multiscale analysis of biological data by scaledependent Lyapunov exponent. Frontiers in Physiology, 2, 1-13.10.3389/fphys.2011.00110326495122291653Search in Google Scholar

[4] Hu, J., Gao, J., Tung, W.W. (2009). Characterizing heart rate variability by scale dependent Lyapunov exponent. Chaos, 19, 028506.10.1063/1.315200719566281Search in Google Scholar

[5] Ivanov, P.Ch., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z.R., Stanley H.E. (1999). Multifractality in human heart beat dynamics. Nature, 39, 461-465.10.1038/2092410365957Search in Google Scholar

[6] Meyer, M., Stiedl, O. (2003). Self-affine fractal variability of human heart beat interval dynamics in health and disease. European Journal of Applied Physiology, 90, 305-316.10.1007/s00421-003-0915-212942331Search in Google Scholar

[7] Sassi, R., Signorini, M.G., Cerutti, S. (2009). Multifractality and heart rate variability. Chaos, 19, 028507.10.1063/1.315222319566282Search in Google Scholar

[8] Gao, J., Hu, J., Tung, W.W. (2012). Entropy measures for biological signal analyses. Nonlinear Dyn, 68, 431-434.10.1007/s11071-011-0281-2Search in Google Scholar

[9] Richman, J.S., Moorman, J.R., (2000). Physiological time series analysis using approximate entropy and sample entropy. American Journal of Physiology - Heart and Circulatory Physiology, 278, H2039- H2049.10.1152/ajpheart.2000.278.6.H203910843903Search in Google Scholar

[10] Costa, M., Goldberger, A.L., Peng, C.K. (2002.) Multiscale entropy analysis of physiological time series. Physical Review Letters, 89 (6), 068102.10.1103/PhysRevLett.89.06810212190613Search in Google Scholar

[11] Costa, M., Goldberger, A.L., Peng, C.K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71, 021906.10.1103/PhysRevE.71.02190615783351Search in Google Scholar

[12] Ponikowski, P., Anker, S.D., Chau, T.P., Szelemei, R., Piepoli, M., Adamopoulos, S., Webb-Peploe, K., Harrington, D., Banasiak, W., Wrabec, K., Coats, A.J. (1997). Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dialeted cardiomyopathy. American Journal of Cardiology, 79, 1645-1650. 10.1016/S0002-9149(97)00215-4Search in Google Scholar

[13] Arbolishvili, G.N., Mareev, V.Y., Orlova, Y.A., Belenkov, Y.N. (2006). Heart rate variability in chronic heart failure and its role in prognosis of the disease. Kardiologiia, 46 (12), 4-11.Search in Google Scholar

[14] Ho Y.L., Lin, C., Lin, Y.H., Lo, M.T. (2011.) The prognostic value of non-linear analysis of heart rate variability in patients with congestive heart failure: A pilot study of multiscale entropy. PLoS ONE, 6 (4), e18699.10.1371/journal.pone.0018699307644121533258Search in Google Scholar

[15] Kikuya, M., Ohkubo, T., Metoki, H., Asayama, K., Hara, A., Obera, T., Inoue, R., Hoshi, H., Hashimoto, J., Totsune, K., Satoh, H., Imai, Y. (2008). Day-by-day variability of blood pressure and heart rate at home as a novel predictor of prognosis: The Ohasama Study. Hypertension, 52 (6), 1045-1050.10.1161/HYPERTENSIONAHA.107.10462018981332Search in Google Scholar

[16] Rovere, M.T.L., Pinna, G.D., Maestri, R., Mortara, S., Capomolla, A., Febo, O., Ferrai, R., Franchini, M., Gnemmi, M., Opasich, C., Riccardi, P.G., Travesri, E., Cobelli, E. (2003). Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation, 107 (4), 565-570.10.1161/01.CIR.0000047275.25795.17Search in Google Scholar

[17] Lucreziotti, S., Gavazzi, A., Scelsi, L., Inserra, C., Klersy, C., Campana, C., Ghio, S., Vanoliand, E., Tavazzi, L. (2000). Five-minute recording of heart rate variability in severe chronic heart failure: Correlates with right ventricular function and prognostic implications. American Heart Journal, 139 (6), 1088-1095.10.1067/mhj.2000.10616810827392Search in Google Scholar

[18] Villegas, J.F.R., Espinosa, E.L., Moreno, D.F.R., Echeverry, P.C.C., Rodriguez, W.A. (2011). Heart rate variability dynamics for the prognosis of cardiovascular risk. PLoS ONE, 6 (2), e17060.Search in Google Scholar

[19] Smilde, T.D.J, Veldhuisen, D.J.V., Berg, M.P.V.D. (2009.) Prognostic value of heart rate variability and ventricular arrhythmias during 13-year follow-up in patients with mild to moderate heart failure. Clinical Research in Cardiology, 98 (4), 233-239.10.1007/s00392-009-0747-019219394Search in Google Scholar

[20] Isler, Y., Kuntalp, M. (2007). Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure. Computers in Biology and Medicine, 37, 1502-1510.10.1016/j.compbiomed.2007.01.01217359959Search in Google Scholar

[21] Isler, Y., Kuntalp, M. (2010). Heart rate normalization in the analysis of heart rate variability in congestive heart failure. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224 (3), 453-463.10.1243/09544119JEIM64220408490Search in Google Scholar

[22] Pecchia, L., Melillo, P., Sansone, M., Bracale, M. (2011). Discrimination power of short-term heart rate variability measures for CHF assessment. IEEE Transactions on Information Technology in Biomedicine, 15 (1), 40-46.10.1109/TITB.2010.209164721075731Search in Google Scholar

[23] Yu, S.N., Lee, M.Y. (2012). Conditional mutual information based selection for congestive heart failure recognition using heart rate variability. Computer Methods and Programs in Biomedicine, 108, 299-309.10.1016/j.cmpb.2011.12.01522261219Search in Google Scholar

[24] Yu, S.N., Lee, M.Y. (2012). Bispectral analysis and genetic algorithm for congestive heart failure recognition based on heart rate variability. Computers in Biology and Medicine, 42, 816-825.10.1016/j.compbiomed.2012.06.005Search in Google Scholar

[25] Hu, J., Gao, J., Tung, W.W., Cao, Y. (2010). Multiscale analysis of heart rate variability: A comparison of different complexity measures. Annals of Biomedical Engineering, 38, 854-864.10.1007/s10439-009-9863-2Search in Google Scholar

[26] Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.Ch., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K. Stanley, H.E., (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101 (23), e215-e22010.1161/01.CIR.101.23.e215Search in Google Scholar

[27] Baim, D.S., Colucci, W.S., Monrad, E.S., Smith, H.S., Wright, R.F., Lanoue, A., Gauthier, D.F., Ransil, B.J., Grossman, W., Braunwald, E. (1986). Survival of patients with severe congestive heart failure treated with oral milrinone. Journal of the American College of Cardiology, 7 (3), 661-670.10.1016/S0735-1097(86)80478-8Search in Google Scholar

[28] Iyengar, N., Peng, C.K., Morin, R., Goldberger, A.L., Lipsitz, L.A. (1996). Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. American Journal of Physiology, 271, 1078-1084.10.1152/ajpregu.1996.271.4.R10788898003Search in Google Scholar

[29] Angelini, L., Maestri, R., Marinazzo, D., Nitti, L., Pellicoro, M., Pinna, G.D., Stramaglia, S., Tupputi, S.A. (2007). Multiscale analysis of short term heart beat interval, arterial blood pressure and instantaneous lung volume time series. Artificial Intelligence in Medicine, 41, 237-250.10.1016/j.artmed.2007.07.01217950584Search in Google Scholar

[30] Huang, X.L., Bao, N.X., Long, W.X. (2009). Multiscale analysis of heart beat interval increment series and its clinical significance. Chinese Science Bulletin, 54, 3784-3789.10.1007/s11434-009-0596-2Search in Google Scholar

[31] Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Tung, C.C., Liu, H.H. (1998). The Empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society A, 454, 903-995.10.1098/rspa.1998.0193Search in Google Scholar

[32] Wessel, N., Schirdewin, A., Kurths, J. (2003). Intermittently decreased beat to beat variability in congestive heart failure. Physical Review Letters, 91, 11980.10.1103/PhysRevLett.91.11980114525464Search in Google Scholar

[33] Thuraisingham, R.A., Gottwald, G.A. (2006). On the entropy analysis of physiological data. Physica A, 366, 323-332.10.1016/j.physa.2005.10.008Search in Google Scholar

[34] Neto, E.P.S., Custaud, M.A., Cejka, J.C., Abry, P., Frutoso, J., Gharib, C., Flandrin, P. (2004). Assessment of cardiovascular autonomic control by empirical mode decomposition. Methods of Information in Medicine, 43, 60-65.10.1055/s-0038-1633836Search in Google Scholar

[35] Porter, T.R., Eckberg, D.L., Fritsch, J.M., Rea, R.F., Beightol, L.A., Schmedtje Jr, J.F., Mohanty, P.K. (1990). Autonomic Pathophysiology in heart failure patients. The Journal of Clinical Investigation, 85, 1362-1371. 10.1172/JCI1145802965812332495Search in Google Scholar

eISSN:
1335-8871
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing