Otwarty dostęp

Appropriate CFD Turbulence Model for Improving Indoor Air Quality of Ventilated Spaces


Zacytuj

[1] Hancock, T. (2002). Built Environment (Encyclopedia of Public Health). Retrieved June 19, 2014 from http://www.encyclopedia.com/doc/1G2-3404000130.htmlSearch in Google Scholar

[2] Rota R., Canossa L. & Nano G. (2001). Ventilation design of industrial premises through CFD modelling. Canadian Journal of Chemical Engineering. 79(1), 80-86.10.1002/cjce.5450790112Search in Google Scholar

[3] Kaji H., Akabayashi S.I. & Sakaguchi J. (2009). CFD analysis for detached house: Study on the ventilation efficiency on constantly ventilated house part 1. Journal of Environmental Engineering. 74(636), 161-16810.3130/aije.74.161Search in Google Scholar

[4] Papanikolaou E., Venetsanos A.G., Cerchiara G.M., Carcassi M. & Markatos N. (2011). CFD simulations on small hydrogen releases inside a ventilated facility and assessment of ventilation efficiency. International Journal of Hydrogen Energy. 36(3), 2597-260510.1016/j.ijhydene.2010.04.119Search in Google Scholar

[5] Kwon K.S., Lee I.B., Han H.T., Shin C.Y., Hwang H.S., Hong S.W., Bitog J.P., Seo I.H. & Han C.P. (2011). Analysing ventilation efficiency in a test chamber using age-of-air concept and CFD technology. Biosystems Engineering. 110(4), 421-433.10.1016/j.biosystemseng.2011.08.013Search in Google Scholar

[6] Zhai Z.Q. & Metzger I.D. (2012). Taguchi-Method-Based CFD Study and Optimisation of Personalised Ventilation Systems. Indoor and Built Environment. 21(5), 690-702.10.1177/1420326X11420746Search in Google Scholar

[7] Yang L., Ye M. & He B.J. (2014). CFD simulation research on residential indoor air quality. Science of the Total Environment.472, 1137-1144.10.1016/j.scitotenv.2013.11.11824365517Search in Google Scholar

[8] Zhuang R., Li X. & Tu J. (2014). CFD study of the effects of furniture layout on indoor air quality under typical office ventilation schemes. Building Simulation. 7(3), 263-275.10.1007/s12273-013-0144-5Search in Google Scholar

[9] Helmis C.G., Adam E, Tzoutzas J, Flocas H.A., Halios C.H, Stathopoulou O.I., Assimakopoulos V.D., Panis V., Apostolatou M. & Sgouros G. (2007). Indoor air quality in a dentistry clinic. Science of the Total Environment. 377(2), 349-365.10.1016/j.scitotenv.2007.01.10017434576Search in Google Scholar

[10]Corgnati S.P. & Perino M. (2013). CFD application to optimise the ventilation strategy of Senate Room at Palazzo Madama in Turin (Italy). Journal of Cultural Heritage. 14(1), 62-69.10.1016/j.culher.2012.02.007Search in Google Scholar

[11] Stathopoulou O. I. & Assimakopoulos V. D. (2008). Numerical Study of the Indoor Environmental Conditions of a Large Athletic Hall Using the CFD Code PHOENICS. Environmental Modeling & Assessment. 13(3), 449-458.10.1007/s10666-007-9107-5Search in Google Scholar

[1] Yang C., Demokritou P.,Chen Q., Spengler J. & Parsons A. (2000). Ventilation and air quality in indoor ice skating arenas. ASHRAE Transactions, 106, p. 338Search in Google Scholar

[2] Cheng Y., Niu, J. & Gao N. (2012). Thermal comfort models: A review and numerical investigation. Building and Environment. 47(1), 13-22.10.1016/j.buildenv.2011.05.011Search in Google Scholar

[3] Lombardi G., Maganzi M., Cannizzo F. & Solinas G. (2009). CFD simulation for the improvement of thermal comfort in cars. Auto Technology. 9(2), 52-56.10.1007/BF03247114Search in Google Scholar

[4] Chen N., Liao S. & Rao Z. (2012). CFD evaluation on the temperature field and thermal comfort of coach in low atmospheric pressure passenger trains with oxygenation at high altitudes. China Railway Science. 33(4), 126-132.Search in Google Scholar

[5] Sun H., An L., Feng Z. & Long Z. (2014).CFD simulation and thermal comfort analysis in an airliner cockpit. Journal of Tianjin University Science and Technology. 47(4), 298-303.Search in Google Scholar

[6] Li Y. & Nielsen P.V. (2011).CFD and ventilation research. Indoor Air. 21, 442-453.10.1111/j.1600-0668.2011.00723.x21585552Search in Google Scholar

[12] Sørensen D.N. & Nielsen P.V. (2003). Quality control of computational fluid dynamics in indoor environments. Indoor Air. 13, 2-17.10.1111/j.1600-0668.2003.00170.xSearch in Google Scholar

[13] van Hooff T. Blocken B. & van Heijst G.J.F. (2013). On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers. Indoor Air. 23, 236-249.10.1111/ina.1201023094648Search in Google Scholar

[14] Castanet S. (1998). Contribution to the study of ventilation and indoor air quality. Doctoral dissertation, INSA de Lyon, Villeurbanne, France.Search in Google Scholar

[15] Stamou A. & Katsiris I. (2006). Verification of a CFD model for indoor airflow and heat transfer. Building and Environment. 41, 1171-1181.10.1016/j.buildenv.2005.06.029Search in Google Scholar

[16] Zhai Z., Zhang Z., Zhang W. & Chen Q.Y. (2007). Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 1 - Summary of Prevalent Turbulence Models. HVAC&R Research. 13(6), 853-870.10.1080/10789669.2007.10391459Search in Google Scholar

[17]Zhang Z, Zhang W., Zhigiang J.W. & Chen Q.Y. (2007).Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 2-Comparison with Experimental Data from Literature. HVAC&R Research. 13(6), 871-886.10.1080/10789669.2007.10391460Search in Google Scholar

[18]Launder B.E. & Spalding D.B. (1972). Lectures in Mathematical Models of Turbulence. London, England: Academic PressSearch in Google Scholar

[19] Schälin A. & Nielsen P.V. (2004). Impact of turbulence anisotropy near walls in room air flow. Indoor Air. 14(3), 159-168.10.1111/j.1600-0668.2004.00201e.x15104782Search in Google Scholar

[20]Yakhot V. & Orszag S.A. (1986). Renormalisation group analysis of turbulence. Journal of Science Computing. 1(1), 3-51.10.1007/BF01061452Search in Google Scholar

[21] Teodosiu C., Rusaouen G. & Hohotă R. (2003). Influence of boundary conditions uncertainties on the simulation of ventilated enclosures. Numerical Heat Transfer, Part A: Applications - An International Journal of Computation and Methodology. 44, 483-504.10.1080/713838253Search in Google Scholar

[22] Hussain S. & Oosthuizen P.H. (2012). Validation of numerical modeling of conditions in an atrium space with a hybrid ventilation system. Building and Environment. 52, 152-161.10.1016/j.buildenv.2011.12.016Search in Google Scholar

[23] Shih T.H., Liou A., Shabbir A., Yang Z. & Zhu J. (1995). A new k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation. Computers Fluids. 24(3), 227-238.10.1016/0045-7930(94)00032-TSearch in Google Scholar

[24]Menter F.R. (1994). Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal. 32(8), 1598-1605.10.2514/3.12149Search in Google Scholar

[25]Langtry R.B. & Menter F.R. (2009). Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA Journal. 47(12), 2894-2906.10.2514/1.42362Search in Google Scholar

[26]Wilcox D.C. (1998). Turbulence Modeling for CFD. La Canada, California, USA: DCW Industries, Inc.Search in Google Scholar

[27] Hussain S., Oosthuizen P.H. & Kalendar A. (2012). Evaluation of various turbulence models for the prediction of the airflow and temperature distributions in atria. Energy and Buildings. 48, 18-28. 10.1016/j.enbuild.2012.01.004Search in Google Scholar

eISSN:
2066-6934
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other